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Abstract 

Emphasizing the significance of cancer-associated fibroblasts (CAFs), non-malignant 
yet pivotal players within the tumor microenvironment (TME), this review illuminates 
the role of inflammatory subtype (iCAF) as catalysts in cancer proliferation, metasta-
sis, and therapeutic resistance. Given their paramount importance, targeting CAFs 
emerges as a robust strategy in the evolving landscape of cancer immunotherapy. 
Nanomaterials, distinguished by their unique features and malleability, hold consider-
able promise in biomedicine, especially in the precision-oriented domain of cancer 
therapy. Their aptitude for modulating immune responses, amplifying drug efficacy 
through precise delivery, and discerningly focusing on cells within the TME situates 
nanomaterials as formidable tools to transcend the boundaries set by conventional 
treatments. This review scrutinizes the convoluted interplay among CAFs, immune 
cells, and tumor cells within the TME. It further showcases widely utilized nanomateri-
als in cancer management. We underscore the potential of nanoscale drug delivery 
systems directed at CAFs, underscoring their transformative power in revolutionizing 
cancer therapies, enhancing precision, and culminating in improved patient outcomes.
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Introduction
Cancer remains one of the most formidable health challenges worldwide (Li et al. 2024a), 
with TME playing a critical role in cancer progression and resistance to therapy (Xiang 
et  al. 2022; Hu et  al. 2020a). Among the various components of the TME, CAFs have 
emerged as key players in facilitating tumor growth and metastasis. CAFs contribute to 
numerous aspects of tumor biology, including promoting tumor growth and metastasis, 
enhancing drug resistance, remodeling the TME, and inducing immunosuppression (Bur-
ley et al. 2022). For instance, CAFs have been shown to transfer exosomes to colorectal can-
cer cells (CRC), significantly increasing the levels of miR-92a-3p, which leads to metastasis 
and chemotherapy resistance in CRC patients (Hu et al. 2019). These cells not only support 
the structural integrity of tumors through extracellular matrix (ECM) deposition, but also 
modulate immune responses, thus contributing to a complex network of interactions that 
promote tumor survival and resistance to treatments (Lu et al. 2023; Piersma et al. 2020). 
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Furthermore, the existence of different subtypes and phenotypes of CAFs across different 
tumors complicates the development of universal targeting strategies. In recent years, the 
heterogeneity of CAFs has emerged as a pivotal factor in cancer progression and therapy 
resistance (Montazersaheb et  al. 2024). These cells, once considered uniform, are now 
understood to exhibit diverse subtypes—each with distinct molecular signatures and roles 
within the TME. This complexity underscores the necessity of developing targeted thera-
pies that address specific CAF functions to effectively combat cancer (Chen et al. 2021). 
Given their pivotal role, CAFs represent a promising target for therapeutic intervention in 
cancer immunotherapy.

Recent advances in nanotechnology have opened new avenues for cancer treatment, par-
ticularly through the development of nanomaterials that can be precisely engineered to tar-
get specific cellular functions within the TME (Liu et al. 2023a; Liang et al. 2024a; Gu et al. 
2024). Nanomaterials offer unique properties, such as small size, large surface area to mass 
ratio, and the ability to encapsulate or conjugate with various therapeutic agents, making 
them ideal candidates for overcoming some of the limitations associated with conventional 
cancer therapies (Rosic 2024; Li et al. 2024b). Different types of nanomaterials, including 
organic and inorganic varieties, offer distinct physicochemical properties that provide sig-
nificant advantages in drug delivery and treatment (Liu et al. 2022a; Hu et al. 2024a; Kimiz-
Gebologlu and Oncel 2022; Huseynov 2024). These materials can be engineered to target 
CAFs specifically, modifying the TME to enhance anti-tumor immunity (Gong et al. 2019; 
Wu et al. 2024). Targeting CAFs with nanomaterials disrupts the fibrotic stroma, reduces 
ECM deposition, and alleviates the immunosuppressive environment (Cheng et al. 2024a). 
This disruption not only enhances the infiltration of immune cells and therapeutic agents 
into the tumor core but also facilitates improved treatment efficacy (Zhu et al. 2022). Addi-
tionally, nanomaterials can be designed to carry immunomodulatory agents, promoting the 
activation and proliferation of immune cells within the TME (Tong et al. 2022). For exam-
ple, nanoparticles targeting CAFs can dismantle the immunosuppressive stroma, allowing 
for increased infiltration and activity of cytotoxic T lymphocytes, thereby boosting immune 
responses against the tumor (Han et  al. 2022). Specifically, the targeting of CAFs with 
nanomaterials presents an innovative approach to modulate the tumor stroma, potentially 
enhancing the efficacy of immunotherapeutic agents (Wu et al. 2024; Jian et al. 2024).

Nanomedicine, as a leading-edge approach in cancer therapy, offers targeted delivery sys-
tems that reduce systemic toxicity and improve therapeutic outcomes (Montazersaheb et al. 
2024; Huseynov 2024; Liu et al. 2019a). In conclusion, nanomedicine targeting CAFs holds 
significant promise for advancing cancer immunotherapy (Wang et al. 2023a). By leverag-
ing the unique properties of nanomaterials, these systems can precisely regulate the TME, 
thereby enhancing both local and systemic immune responses (Hong et al. 2025; Liu et al. 
2024a). This approach has the potential to improve treatment outcomes, survival rates, and 
the quality of life for cancer patients.

Method
We conducted a comprehensive search of the PubMed database for English-lan-
guage publications from 2019 to 2024, using the keywords ’cancer-associated fibro-
blasts (CAFs)’, ’nanomedicine’, ’drug delivery’, ’tumor microenvironment (TME)’, and 
’cancer immunology’. This search yielded a total of 921 articles. Following a thorough 



Page 3 of 41Zhang and Chen ﻿Cancer Nanotechnology            (2025) 16:2 	

screening process, studies lacking relevance to CAFs, nanomedicine, and TME interac-
tions were excluded. Based on predefined inclusion criteria, 394 articles were selected 
for detailed analysis, focusing on recent advancements in CAF-targeting strategies, the 
role of nanomaterials in drug delivery, and their interactions within the TME and cancer 
immunotherapy.

What is CAF?
CAF subtypes: origins, functions, and their role in cancer therapy

CAFs arise from various cellular origins, with one common source being normal fibro-
blasts recruited by tumor cells, which are subsequently converted into CAFs (Rimal et al. 
2022). Additionally, CAFs can emerge from the transformation of other cell types, such 
as endothelial and epithelial cells, mesenchymal stem cells, and adipocytes, as well as 
from the differentiation of tumor stem cells (Kobayashi et al. 2022; Zhang et al. 2023a; 
Tang et  al. 2022). The origin of CAFs may also be influenced by physiological condi-
tions, tumor type, environmental factors, and other variables (Sahai et  al. 2020; Santi 
et  al. 2018). For example, studies have shown that in breast cancer, adipocytes can 
undergo dedifferentiation into CAFs (Jotzu et  al. 2010). Interestingly, a lack of certain 
substances in specific environments can also induce CAF differentiation (Ferrer-May-
orga et  al. 2017). For instance, Jerome Thiery’s research highlights that deficiencies in 
vitamins A or D can promote CAF differentiation in some cases (Thiery 2022). However, 
further research is needed to fully explore the various origins of CAFs under different 
conditions.

Moreover, different subtypes of CAFs exhibit distinct biological characteristics and 
functions (Huang et al. 2023; Cortez et al. 2014), such as invasive CAFs, immunosup-
pressive CAFs, stromal CAFs, and degenerative CAFs. Invasive CAFs contribute to 
tumor invasion and metastasis (Yin et al. 2024), immunosuppressive CAFs help tumors 
evade immune surveillance (Pradip et  al. 2021), stromal CAFs play a key role in con-
structing the tumor microenvironment (Dong et al. 2024), and degenerative CAFs are 
primarily associated with tumor drug resistance (Zhu et al. 2018). Generally, CAFs are 
often categorized into three major groups: myofibroblasts (myCAFs), inflammatory 
CAFs (iCAFs), and antigen-presenting CAFs (apCAFs) (Wang et  al. 2024a; Maia and 
Wiemann 2021; Foster et al. 2022). Myofibroblastic CAFs (myCAFs) are characterized 
by the expression of alpha-smooth muscle actin (α-SMA) and are primarily involved 
in matrix deposition and remodeling (Li et al. 2024c; Geng et al. 2021). Inflammatory 
CAFs (iCAFs) secrete cytokines and chemokines that modulate immune responses, 
marked by the expression of S100A4 (Friedman et al. 2020; Santolla et al. 2021). Anti-
gen-presenting CAFs (apCAFs) have recently been identified for their capability to pre-
sent antigens and interact with T cells (No Author 2022; Huang et al. 2022a; Kerdidani 
et al. 2022), although their markers are still being explored (Yamashita and Kumamoto 
2024; Guo and Xu 2024). iCAFs contribute to creating an immunosuppressive environ-
ment that supports tumor growth by secreting inflammatory mediators (Guo and Xu 
2024; Monteran and Erez 2019), while myCAFs enhance tumor stiffness and fibrosis, 
affecting drug penetration and efficacy (Bates et  al. 2023). apCAFs represent a poten-
tial target for immunotherapy due to their role in modulating T-cell activity within the 
TME (Kerdidani et al. 2022). Understanding these CAF subtypes and their unique role in 
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TME allows us to design more effective nanomaterial-based therapies (Rosic 2024; Singh 
et al. 2024a; Wang et al. 2024b; Peng et al. 2024), for example, we can develop nanopar-
ticles that simultaneously target multiple CAF subtypes or combine CAF targeting with 
direct anticancer effects (Huang et al. 2024a). Specifically, a new nanoparticle could be 
designed to carry both TGF-β inhibitors (for myCAFs) and siRNA, a cytokine for iCAFs 
(D’Aversa et al. 2024; Yang et al. 2023a; Wu et al. 2023). We can even tailor the nanopar-
ticle treatment regimen to the patient based on the CAF population that dominates the 
patient’s tumor, thus achieving personalized treatment (Tian et al. 2024; Su et al. 2023).

Interestingly, some studies suggest that balancing the number of CAF subgroups 
may offer important clinical benefits (Foster et al. 2022). This indicates the potential for 
patient-specific treatments based on the number and type of CAF subpopulations (Hu 
et al. 2021). Different CAF subtypes exist in various tissues and organs, and understand-
ing their unique characteristics and functions is essential for developing new strategies 
for targeted therapies (Helms et al. 2022). The presence of multiple CAF subtypes within 
different tumors and tissues suggests that these cells may play diverse roles in various 
diseases (Houthuijzen et al. 2023; Sung and Lee 2024). Gaining deeper insights into the 
functions of CAF subtypes will contribute to our understanding of the tumor microen-
vironment and its regulatory mechanisms, offering potential new directions for targeted 
cancer therapy (Fig. 1) Yang et al. 2023b.

CAF markers: key players in tumor progression and therapy

CAFs and their associated markers play a crucial role in tumor progression, particularly 
through their varied biological functions in the TME (Pan et al. 2024). Understanding 
these markers is essential for advancing our comprehension of cancer immunotherapy. 
Currently, it is widely accepted that CAF markers hold significant clinical relevance 
(Simon and Salhia 2022). For example, these markers are valuable tools for identifying 
and tracking the development of tumors (Gadd et  al. 2022). Clinicians can use these 
markers to diagnose tumors and assess disease severity by detecting them in blood or 
tissue samples (Li et  al. 2018a). Additionally, CAF markers can help predict a tumor’s 
response to different treatments and monitor the effectiveness of therapies. Given this, 
the clinical potential of CAF markers is promising (Zhang et al. 2023b).

The discovery of CAF markers has been a challenging and ongoing process. α-Smooth 
muscle actin (α-SMA), first identified in the 1970s by Gabbiani and colleagues in studies 
on wound healing, remains one of the most widely recognized markers of CAFs and is 
commonly used for their identification (Tarbit et al. 2019; Muchlińska et al. 2022). How-
ever, recent research indicates that α-SMA-positive CAFs may exhibit both pro-tumor-
igenic and anti-tumorigenic properties (Shinde et al. 2017; Elewa et al. 2024). Another 
classic marker is fibroblast activation protein (FAP), a membrane protein discovered in 
the early 1990s in interstitial cells and certain cancers (Fitzgerald 2024). Platelet-derived 
growth factor receptor (PDGFR), highly expressed in CAFs and linked to their activation 
and tumor-promoting roles, was identified by Jan-Åke Gustafsson and Charles-Henri 
Heldin during molecular cloning experiments in 1978 (Matsui et al. 1989).

With advancements in detection techniques, scientists have identified an array of 
CAF markers using methods like single-cell sequencing (Lavie et al. 2022). Additional 
markers include Vimentin, fibronectin (FN), laminin (LN), matrix metalloproteinases 
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(MMPs), epithelial cell adhesion molecule (EPCAM), synovial glycoprotein (SGR), and 
mannose-binding lectin (MBL) (Hernández-Jiménez et al. 2022; Nurmik et al. 2020; Mao 
et al. 2021; Zhao et al. 2023). Interestingly, in breast cancer-associated fibroblasts, spe-
cific genes such as NOTCH3 and HES4 have been found to serve as markers involved 
in CAF self-renewal and proliferation (Bartoschek et al. 2018). This discovery suggests a 
potential new method of integrating gene technology with these specific markers, offer-
ing a novel direction for future research.

While many new markers have been identified, the number of known fibroblast bio-
markers remains limited (Xia et al. 2024). A key challenge moving forward is distinguish-
ing between normal fibroblasts, CAFs, and different CAF subtypes using simple markers 
(Nurmik et  al. 2020). This distinction is crucial for understanding CAF heterogeneity 
and improving targeted therapies. Hopefully, further research will provide answers to 
these challenges in the near future.

The multifaceted role of cancer‑associated fibroblasts in tumor progression and treatment 

implications

The relationship between CAFs, tumors, and tumor cells is complex and has significant 
implications for patient prognosis (Koumpis et al. 2024; Wang et al. 2024c). Studies sug-
gest that the quantity and activity of CAFs are closely correlated with the prognosis of 
cancer patients (Qin et al. 2023). However, the impact of CAFs on tumor development 

Fig. 1  CAF subtypes: origins, functions, and their role in cancer therapy. The illustration depicts the diverse 
cellular origins, heterogeneity, and functional roles of CAFs within the tumor microenvironment. CAFs can 
originate from various cell types, including epithelial cells, endothelial cells, mesothelial cells, adipocytes, 
smooth muscle cells, or differentiate from bone marrow-derived mesenchymal stem cells. The figure also 
highlights three major CAF subtypes: myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and 
antigen-presenting CAFs (apCAFs), which are involved in extracellular matrix remodeling, cytokine secretion, 
and immune modulation, respectively. These CAF subtypes display distinct functions, either promoting or 
restraining tumor progression, reflecting the phenotypic and functional heterogeneity of CAFs. Reproduced 
fromYang et al. 2023b, Copyright © 2023 by the authors
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and prognosis is multifaceted, influenced by various factors (Caramelo et al. 2023). Dur-
ing cancer progression, CAFs interact with tumor cells by expressing extracellular sign-
aling molecules such as osteopontin (OPN) and hepatocyte growth factor (HGF), which 
influence tumor cell proliferation, invasion, and migration (Ping et al. 2021). These inter-
actions demonstrate how CAFs can significantly shape the TME.

In the TME, CAFs regulate tumor growth through several mechanisms, including 
metabolic modulation. They affect processes such as glucose regulation and pH balance, 
and even mitochondrial function, contributing to the energy metabolism of tumor cells 
(Owen et al. 2022). Additionally, mechanical forces generated by CAFs can alter tumor 
cell movement and morphology by activating cytoskeletal systems and intracellular sign-
aling pathways, potentially accelerating tumor spread (Sharbeen et al. 2021). Exosomes, 
small extracellular vesicles secreted by cells, are critical mediators of cellular communi-
cation and tissue homeostasis (Pedersen et al. 2024). CAF-derived exosomes, in particu-
lar, play an essential role in influencing tumor behavior (Li et al. 2017; Shi et al. 2023). For 
example, Piwocka and colleagues found that exosomes secreted by CAFs carry micro-
RNA-296-3p, which promotes malignant behaviors like proliferation, migration, inva-
sion, and drug resistance in ovarian cancer cells. This suggests that microRNA-296-3p 
could serve as both a diagnostic marker and a therapeutic target (Sun et  al. 2024a). 
Similarly, Zhang et al. discovered that miR-522, delivered via exosomes, enhances tumor 
cell resistance to chemotherapy and inhibits ferroptosis in gastric cancer cells by target-
ing ALOX15, thereby regulating lipid peroxidation (Zhang et al. 2020a). Their findings 
highlighted a novel intercellular pathway involving USP7, hnRNPA1, exo-miR-522, and 
ALOX15, which influences chemotherapy sensitivity through lipid peroxidation. Admit-
tedly, CAFs contribute to the dense fibrotic stroma characteristic of many solid tumors 
(D’Aversa et al. 2024; Norton et al. 2020). This fibrosis not only physically impedes drug 
penetration, but also actively sequesters chemotherapeutic agents, significantly lowering 
their bioavailability and efficacy (D’Aversa et  al. 2024). CAFs are prolific producers of 
growth factors like TGF-β, which not only enhances tumor cell proliferation and survival 
but also contributes to the creation of an immunosuppressive tumor microenvironment 
that shields the tumor from immune cell attack (Yang et  al. 2023a; Perez-Penco et  al. 
2024). So recognizing the multifaceted roles of CAFs in mediating therapy resistance 
provides a strong rationale for developing CAF-targeted therapies (Timperi et al. 2024). 
Strategies that disrupt CAF functions or modify their interactions with tumor cells and 
other TME components could significantly enhance the efficacy of both conventional 
and immune-based cancer therapies (Xue et al. 2024; Eigentler et al. 2024). Conversely, 
tumors and tumor cells can influence CAF activation and function (Sung and Lee 2024). 
CAFs can be activated through direct interactions with tumor cells or via signaling path-
ways such as the Notch pathway. Once activated, CAFs remodel the ECM, which further 
amplifies their activation in a positive feedback loop (Park et al. 2020). Tumor cells may 
also induce the "reverse Warburg effect" in CAFs, enhancing glycolytic activity to meet 
the metabolic demands of the tumor. In pancreatic ductal adenocarcinoma (PDAC), for 
instance, tumor cells induce autophagy in CAFs, leading to the release of non-essential 
amino acids like alanine (Yang et al. 2023b). These amino acids support cancer cells by 
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fueling the tricarboxylic acid (TCA) cycle and lipid biosynthesis, aiding tumor growth 
and survival (Melissari et al. 2020).

In conclusion, the intricate relationship between CAFs, tumors, and tumor cells 
underscores the importance of CAFs as both therapeutic targets and integral compo-
nents of cancer treatment strategies (Park et al. 2020). This interconnectedness suggests 
that future therapeutic approaches should be tailored based on the specific tumor type 
and CAF subtype, rather than relying on a one-size-fits-all approach (Li et  al. 2021a; 
Esposito et al. 2024). Personalizing treatments in this way will help address the unique 
challenges posed by CAF–tumor interactions and improve the effectiveness of cancer 
therapies (Toledo et al. 2022; Jia et al. 2024a).

Cancer‑associated fibroblasts: key regulators of the tumor microenvironment and tumor 

progression

The tumor microenvironment (TME) is a complex ecosystem composed of various cel-
lular and non-cellular components, including ECM, blood vessels, immune cells, and 
tumor-associated cells (Timperi et al. 2024). CAFs are key players in this environment, 
interacting extensively with tumor cells and significantly contributing to tumorigenesis 
and progression (Schütz et al. 2023). Current research shows that CAFs can influence 
immune evasion by either activating or inhibiting the immune system (Peng et al. 2024; 
Li et  al. 2023), as well as promoting angiogenesis, regulating inflammatory responses, 
and remodeling the ECM (Zeng et al. 2023a; Luo et al. 2022). These functions illustrate 
the crucial role of CAFs in shaping the TME, making the interaction between CAFs and 
the TME an essential focus for cancer research (Thinyakul et al. 2024).

CAF interactions within the TME are reciprocal. CAFs regulate the TME by secret-
ing growth factors, chemokines, and other molecules that facilitate tumor formation 
and progression (Han et al. 2020a). For instance, CAFs secrete signaling molecules that 
remodel the ECM and reprogram metabolic pathways within the TME. This metabolic 
reprogramming supports tumor cell survival and growth, while the remodeling of the 
ECM enhances the structural environment necessary for tumor expansion (Cirri and 
Chiarugi 2012). Moreover, CAFs engage in transmembrane signaling with other cells in 
the TME, influencing disease progression through pathways such as PDGF, IL-6, and 
TNF-α (Fang et  al. 2023; Piwocka et  al. 2024). These chemokines attract and recruit 
immune cells and other cell types to the tumor site, further contributing to tumor 
growth and metastasis.

In recent years, the role of exosomes in the TME has gained attention, particularly in 
relation to cancer progression and inflammation (Liu et al. 2021). Exosomes are extra-
cellular vesicles that facilitate communication between CAFs and tumor cells. These 
vesicles carry proteins, RNA, and other bioactive molecules that influence tumor devel-
opment (Hajialiasgary Najafabadi et al. 2024; Cai et al. 2023). For example, research by 
Sun et al. demonstrated that exosomal non-coding RNAs (ncRNAs) secreted by CAFs 
contribute to the formation of the colorectal cancer microenvironment and are linked 
to resistance mechanisms in CRC patients undergoing radiotherapy (Sun et  al. 2023). 
Exosomal communication is thus a critical pathway by which CAFs can influence tumor 
progression and treatment resistance.
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Additionally, the TME influences the biological characteristics and functions of CAFs 
(Zhang et al. 2024a; Barros da Silva et al. 2024). For instance, environments with high 
concentrations of hyaluronic acid (HA) or oxidative stress can stimulate CAFs to exhibit 
more aggressive, tumor-promoting behavior (Donelan et al. 2022). These environmen-
tal factors can alter CAF activity, enhancing their ability to support tumor growth and 
metastasis. However, despite these insights, many uncertainties remain regarding how 
different TMEs affect CAF behavior (Liu et al. 2019b; Xu et al. 2023). Future research is 
expected to provide breakthroughs in understanding these complex interactions, which 
could lead to novel therapeutic strategies targeting CAFs and their interactions within 
the TME.

The role of cancer‑associated fibroblasts in immune regulation within the tumor 

microenvironment

Immune cells are an important part of the tumor microenvironment and play complex 
roles in the development of cancer. These roles may sometimes have time-dependent 
dynamic transitions, such as the polarization of macrophages into different physiological 
phenotypes under different circumstances (Huang et al. 2021). In many cases, CAFs con-
tribute to immune suppression, hindering the immune system’s ability to attack tumor 
cells (Laplagne et  al. 2019). This interaction between CAFs and immune cells is cru-
cial for understanding how the tumor microenvironment supports cancer growth and 
evades immune surveillance. CAFs can interact with a variety of immune cells, includ-
ing T cells, helper T cells, natural killer (NK) cells, macrophages, and myeloid-derived 
suppressor cells (MDSCs) (Thiery 2022; Huang et al. 2022a; Sharbeen et al. 2021; Tsou-
makidou 2023). One prominent example of this interaction is how CAFs inhibit T cell 
activation. In a recent study, Ying et al. demonstrated that CAFs can express inhibitory 
receptors such as programmed death ligand 1 (PD-L1), which binds to PD-1 on T cells. 
This interaction effectively dampens the activation of T cells, allowing tumor cells to 
evade immune surveillance and proliferate unchecked (Ying et al. 2023). Similarly, Zeng 
et  al. found that macrophages expressing M2 phenotype-related genes could enhance 
chemotherapy resistance in both CAFs and breast cancer cells, further promoting tumor 
survival and progression (Zeng et  al. 2023b). In addition to T cells and macrophages, 
CAFs regulate cancer cell proliferation and migration by secreting extracellular signaling 
molecules such as growth factors and chemokines (Yavuz et al. 2020). These molecules 
recruit immune cells to the tumor site, where they often contribute to an immunosup-
pressive environment rather than promoting an effective anti-tumor response. However, 
the impact of CAFs on immune cells is not uniform (Jia et al. 2024b). Different CAF sub-
types can influence the distribution and activity of immune cells in distinct ways, under-
scoring the importance of subtype-specific research in understanding the diverse roles 
of CAFs within the TME (Schütz et al. 2023).

Recent advances in spatial transcriptomics have provided deeper insights into the 
physical and functional relationships between CAFs and immune cells within tumors (Li 
et al. 2024d). For instance, Chen et al. used this technology to study lung cancer, reveal-
ing distinct distribution patterns of different cell types within the TME. They found that 
CAFs and malignant tumor cells often cluster together at the tumor core, while immune 
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cells, including macrophages and dendritic cells, are more commonly found at the 
tumor’s periphery (Chen et al. 2023a). This spatial arrangement highlights the dynamic 
interplay between CAFs and immune cells and may help explain how immune suppres-
sion is maintained in certain regions of the tumor.

Nanomaterials and tumor targeted therapy
Classification of nanomaterials

In recent years, the rapid development of nanomaterials and their increasing applica-
tions in medicine have made medical nanomaterials a significant area of research (Lai 
et  al. 2024; Meng et  al. 2024). This review aims to explore various nanomaterials uti-
lized in modern medicine, including nanoparticles, biomimetic nanoparticles, inorganic 
nanomaterials, organic–inorganic hybrid nanomaterials, and conventional nanomateri-
als, as well as their specific roles in biological systems (Table 1). At the same time, we 
also aim to clearly demonstrate the advantages and limitations of these nanomaterials in 
CAF targeting (Table 2; Fig. 2) Eleraky et al. (2020).

Tumor cells are influenced by various factors, including the TME and CAFs. Nano-
materials have shown the ability to either directly or indirectly disrupt tumor cell 
infiltration, invasion, and proliferation (Sun et al. 2024b). For example, a recent study 
demonstrated that gold–silver core–shell hybrid nanomaterials significantly inhibit 
the migration and proliferation of adenocarcinoma cells that are promoted by fibro-
blasts, effectively limiting metastatic spread (Kovács et al. 2020). Another experiment 
found that ZnO@CuS nanoparticles enhance tumor cell sensitivity to photothermal 
therapy by generating free radicals, which suppress cell migration (Deng et al. 2021). 
Additionally, the conjugation of monoclonal antibodies with nanomaterials offers 
highly targeted therapy that spares healthy tissue, and the combination of multiple 
drugs with nanomaterials opens new avenues in cancer treatment (Jiang et al. 2020). 
Radiotherapy and chemotherapy remain pivotal cancer treatments, with nanomate-
rials enhancing their efficacy (Liu et  al. 2018; Goel et  al. 2023; Jackson et  al. 2023). 
Gold nanocages, when coupled with radioactive isotopes, enhance the effects of radi-
otherapy by forming radiolabeled marker (Qin et al. 2017). Nanoscale radiosensitizers 
have been observed to improve tumor cell sensitivity to radiation, thereby amplify-
ing radiotherapy outcomes (Jain et al. 2024). Furthermore, nanomedicines, which are 
designed to carry chemotherapeutic agents, can target specific receptors on tumor 
cells, leading to increased drug accumulation and enhanced chemotherapy effective-
ness (Cun et al. 2019). Nanomaterials also address the challenge of tumor drug resist-
ance. Some nanoliposomes can prolong drug circulation, increasing bioavailability 
(Gu et  al. 2021), while nanomicelles bind with multidrug resistance-associated pro-
teins to facilitate drug entry into tumor cells (Edis et al. 2021; Hu et al. 2020b). Cheng 
et al. demonstrated that pH-sensitive gold nanocage conjugates can release anticancer 
drugs in response to acidic conditions, enhancing both drug concentration in tumor 
tissues and radiotherapy effectiveness (Chen et al. 2023b). Interestingly, several stud-
ies have shown that nanoparticles can cross the blood–brain barrier and modulate 
the TME, enhancing the efficacy of drugs for neurological conditions (Liang et  al. 
2022; Xu et al. 2022). This potential application of nanomedicines in neurological dis-
eases remains a promising area of future research (D’Aversa et al. 2024; Krsek et al. 
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2024). Further, the intrinsic properties of inorganic nanomaterials can be harnessed 
to disrupt the physical structure of the ECM, commonly reinforced by CAFs (Fu 
et  al. 2022; Seo et  al. 2021). For example, magnetically guided nanoparticles can be 
directed to fibrotic regions of tumors to deliver therapeutics that specifically disrupt 
CAF functions (Guo et al. 2024a). Finally, inorganic nanomaterials are not limited to 
therapeutic applications, some also possess diagnostic capabilities, such as fluores-
cence and magnetic resonance imaging (MRI) (Ren et al. 2024; Cheng et al. 2024b). 
Magnetic nanoparticles, particularly those based on iron oxide, are extensively used 
in magnetic MRI due to their superb contrast enhancement capabilities (Ferrera et al. 
2024; Guedes et  al. 2024). Their magnetic properties also allow for precise control 

Table 2  Advantages and limitations of nanomaterials for CAF targeting

Nanomaterial type Examples Unique properties and 
advantages

Limitations

Organic Liposomes, PLGA NPs High biocompatibility, versa-
tile drug/gene delivery

Limited imaging and lower 
physical stability

Inorganic Iron oxide NPs, AuNPs, QDs Magnetic and optical prop-
erties for targeted therapy 
and imaging

Potential toxicity, organ 
accumulation, complex 
clearance

Hybrid Liposome-AuNPs, PLGA-
coated Fe NPs

Enhanced stability, com-
bined drug delivery and 
imaging (theranostics)

Complex synthesis, regula-
tory hurdles

Fig. 2  Advancements in medical nanomaterials. Nanosystems can be classified into inorganic and organic 
types, based on their matrix characteristics and the materials they are composed of. This figure also focuses 
on the specific roles these nanomaterials play in managing bacterial biofilms. Furthermore, the title conveys 
the diversity of nanomaterial types discussed and their significant impact on biological systems. Reproduced 
from Eleraky et al. (2020), Copyright © 2020 by the authors
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and targeting when used with an external magnetic field, enhancing drug delivery effi-
ciency to tumor sites, including those rich in CAFs (Hernández-Jiménez et al. 2022).

In conclusion, the application of nanomaterials in medicine continues to expand. 
However, while these materials offer significant promise, especially in cancer immuno-
therapy, there remain substantial challenges that must be addressed in future research.

Targeting cancer‑associated fibroblasts with nanomaterials: therapeutic applications 

and mechanisms

Numerous previous studies have demonstrated that nanomaterials significantly affect 
CAFs (Li et al. 2018a), disrupting their functions and influencing the TME through vari-
ous mechanisms (Wang et al. 2024d). On one hand, some nanomaterials serve as carri-
ers for chemotherapeutic drugs or bioactive molecules, delivering them directly to CAFs 
(Huang et al. 2024a) and enhancing therapeutic efficacy while reducing off-target effects 
on healthy tissues (Geng et al. 2023). For instance, Li et al. developed reversibly bonded 
nanoparticles that can deliver anticancer drugs precisely to CAFs, illustrating their 
potential in targeted therapy (Yu et al. 2020). Additionally, Aljabali et al. highlighted that 
some nanomaterials possess immunomodulatory properties, facilitating the clearance or 
control of CAFs by modulating immune response (Aljabali et al. 2023).

Beyond drug delivery, specific nanomaterials directly target CAF-related molecular 
pathways to inhibit CAF activity (Zhou et al. 2021; Xin et al. 2021). For example, Zhou 
et al. developed a method using α-FAP-Z@FRT nanomaterials to target FAP on the sur-
face of CAFs, this material selectively targets FAP expression in CAFs without affecting 
non-tumor tissues (Zhou et al. 2021). Moreover, different nanomaterials can affect CAFs 
in various ways. Further, gold-based nanomaterials, such as gold nanoparticles (GNPs) 
and gold nanocages, have demonstrated potential to modulate critical pathways within 
CAFs (Alhussan et  al. 2022, 2021).For instance, Li et  al. utilized a complex nanocom-
posite involving graphene oxide, gold nanoparticles, and fluorescent dyes, which was 
observed to release chemicals selectively to eliminate CAFs upon near-infrared laser 
irradiation (Yu et  al. 2020). Additionally, certain nanomaterials function as carriers 
for photothermal therapy, generating heat upon exposure to light to induce apoptosis 
in CAFs (Li et al. 2018a). For instance, Mukherjee et al. demonstrated that 20 nm gold 
nanoparticles can transform CAFs into a quiescent state rich in lipids, inhibiting matrix 
deposition. Similarly, studies indicate that gold nanocages, nanoparticles, and nanorods 
can target and suppress CAF growth and function through photothermal effect (Hos-
sen et al. 2019; Zheng et al. 2020). Specifically, gold nanocages disrupt CAF structures 
via photothermal therapy, impeding their proliferation and secretory function (Zheng 
et  al. 2020), while gold nanoparticles selectively target CAFs to inhibit their prolifera-
tion and migration capabilities (Hossen et al. 2019). Nanomaterials offer unique capa-
bilities for modulating key biochemical pathways within cancer-associated fibroblasts 
(Zhang et al. 2024b). Specific nanomaterials such as gold nanoparticles and liposomal 
formulations have been explored for their potential to interfere with TGF-β and IL-6 
signaling pathways, pivotal in CAF-mediated tumor progression and immunosuppres-
sion (Pradhan et  al. 2023; Zheng et  al. 2023a). For instance, gold nanoparticles, when 
engineered to carry TGF-β inhibitors, target the fibrotic activity of CAFs (Yang et  al. 
2021; Zhang et al. 2021). By disrupting TGF-β signaling, these nanoparticles reduce the 
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fibroblastic activation and ECM deposition, which are crucial for tumor stroma forma-
tion and immunosuppression. Liposomal carriers encapsulating IL-6 siRNA effectively 
reduce the expression of IL-6 in CAFs (Zhang et al. 2024c; Dana et al. 2022). This reduc-
tion dampens the JAK/STAT signaling pathway, thereby mitigating the inflammatory 
and tumor-promoting activities of CAFs (Fang et al. 2023; Ahrens et al. 2017). Interest-
ingly, recent research has shown that some nanomaterials can paradoxically promote the 
growth and function of CAFs, stimulating their proliferation and migration (Chen et al. 
2023b; Fei et al. 2023). These findings may provide a new perspective for targeted treat-
ment of CAFs and cancer immunotherapy. Moreover, we discovered that certain nano-
materials enable the detection of gene expression and products in CAFs, which could 
facilitate studies on their role in tumor development in the future (Cun et  al. 2019). 
While these innovative ideas currently lack practical applications, they hold promise for 
future research and clinical applications.

Nanomaterials as modulators of cancer‑associated fibroblasts in the tumor 

microenvironment

Research on how nanomaterials interact with CAFs within the TME is a key area in 
modern cancer therapy (Zhang et al. 2023c; Bromma et al. 2020). Nanomaterials modu-
late cellular-level biological activities within the TME due to their unique size and sur-
face properties (Hu et al. 2022). These materials influence the behavior of CAFs either 
through direct physical interactions or by releasing specific chemical signals that pro-
mote or inhibit their pro-tumorigenic functions (Kovács et al. 2020). For instance, some 
nanomaterials alter the ECM composition, impacting the support that CAFs provide to 
tumor cell (Liu et al. 2019a; D’Aversa et  al. 2024). To be specific, incorporating ECM-
degrading enzymes like hyaluronidase or collagenase into nanocarrier designs can help 
break down the fibrous barrier, improving the penetration and distribution of nanoparti-
cles within the tumor stroma (Chandrasekar et al. 2024; Qiu et al. 2024).

Nanomaterials within the TME not only serve as carriers for drugs and bioactive 
molecules (Yu et al. 2020; Yao et al. 2020). For example, specific nanomaterials regulate 
the availability of oxygen and nutrients, promoting apoptosis in tumor cells and sub-
sequently reducing tumor volume (Qin et al. 2017; Yuan et al. 2021; Ruan et al. 2022). 
Hypoxia, a common feature in solid tumors, significantly affects the biochemical envi-
ronment, altering the reactivity of nanomaterials (Song et al. 2024; Li et al. 2025). This 
can lead to premature degradation or deactivation of therapeutic agents carried by the 
nanoparticles, or it may change the way these materials are taken up by CAFs and other 
tumor cells (Wang et  al. 2020). For example, developing nanomaterials that are acti-
vated by or responsive to hypoxic conditions can turn this TME characteristic into an 
advantage, triggering drug release or activation specifically in low-oxygen zones, thus 
targeting CAFs more effectively (Zhang et al. 2019; Zu et al. 2023). Additionally, these 
nanomaterials can modulate the immune system by targeting and activating various 
immune cells, thereby bolstering the immune response and enhancing the effective-
ness of cancer therapies (Han et al. 2020b; Fei et al. 2023). Furthermore, nanomaterials 
exhibit therapeutic potential by regulating the roles of CAFs in immune responses, angi-
ogenesis, and tumor tissue stiffening (Lu et al. 2024; Li et al. 2018b). For instance, certain 
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nanomaterials influence the physical and chemical dynamics of the TME. They disrupt 
angiogenesis in tumors and regulate the secretion of growth factors by tumor-associated 
fibroblasts, effectively inhibiting tumor growth and metastasis (Liang et al. 2022; Zhao 
and Rodriguez 2013).

Despite challenges such as targeting precision and potential off-target effects, current 
research focuses on enhancing nanomaterial design to overcome these issues (Kang and 
Li 2023). Overall, the interactions between nanomaterials and CAFs enrich our under-
standing of the complexity of the TME and open avenues for innovative anticancer strat-
egies. However, further research and clinical trials are essential to optimize the use of 
nanomaterials and ensure their safety in clinical applications.

Immunomodulatory roles of nanomaterials targeting CAFs

CAFs play a central role in maintaining an immunosuppressive TME by recruiting and 
modulating immune cells through cytokine and chemokine secretion (Chandrasekar 
et al. 2024). Nanomaterials, when designed to target CAFs specifically, have the poten-
tial to disrupt this immune suppression and reprogram the TME to favor anti-tumor 
immune responses (Wang et al. 2023a; Shen et al. 2023). Although the diversity of nano-
materials leads them to be able to control the tumor immune microenvironment in a 
state of "activation" or "inhibition" by directly targeting specific cellular or molecular 
mechanisms, many materials are currently designed to target CAFs cells, which inhibit 
tumor immunity (Jian et al. 2024; Zhen et al. 2017; Zang et al. 2022).

Nanoparticles that specifically target CAFs, such as those delivering FAP- or α-SMA-
targeted therapies, can significantly alter cytokine profiles within the TME (Rodpon-
thukwaji et al. 2024; Priwitaningrum et al. 2016). By downregulating immunosuppressive 
cytokines, these nanoparticles can alleviate T-cell suppression, enhance T-cell activation, 
and potentially improve T-cell infiltration into the tumor (Liu and Zhao 2024; Wang 
et  al. 2024e). For instance, in the study by zhou et  al., liposomal nanoparticles loaded 
with TGF-β inhibitors have shown promise in reprogramming the TME, reducing the 
immunosuppressive signals that prevent effective T-cell responses (Zhou et al. 2024a). 
By diminishing CAF-mediated suppression, nanoparticles can improve the efficacy of 
immune checkpoint inhibitors, such as PD-1/PD-L1 inhibitors (An et  al. 2023; Gong 
et al. 2021). Studies have shown that when CAF-targeting nanoparticles are combined 
with PD-L1 inhibitors, there is an increase in T-cell infiltration and activation within 
tumors (An et  al. 2023; Tan et  al. 2021). For example, gold nanoparticles conjugated 
with immune-modulatory ligands have been observed to enhance PD-1 blockade effi-
cacy in melanoma models by reducing CAF-derived T-cell suppression (Cao et al. 2021). 
Further, CAFs often recruit and polarize macrophages toward an immunosuppressive 
M2 phenotype (Perez-Penco et al. 2024; Wei et al. 2024), which supports tumor growth 
and immune evasion (Tomassetti et  al. 2024). However, nanoparticles targeting CAFs 
can disrupt this process by altering the CAF-derived cytokine environment (Pradhan 
et al. 2023), leading to a shift from M2 (immunosuppressive) to M1 (pro-inflammatory, 
anti-tumor) macrophage phenotypes (Gong et al. 2024). For instance, polymeric nano-
particles delivering IL-6 inhibitors to CAFs have demonstrated the ability to reduce M2 
macrophage recruitment, reprogramming the TME to support a more inflammatory and 
immune-activating environment (Feng et al. 2024).
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In addition, combining CAF-targeting nanomaterials with immune checkpoint 
inhibitors, such as PD-1 or PD-L1 inhibitors, represents a promising therapeu-
tic strategy (Liu et al. 2024b). CAF-targeting nanoparticles can “prime” the TME by 
reducing immune suppression, creating a more receptive environment for immune 
checkpoint inhibitors to work effectively (Table 3). Studies have shown that pre-treat-
ment with CAF-targeting nanoparticles such as TGF-β inhibitor-loaded liposomes, 
can decrease CAF-derived immunosuppressive factors and enhance T-cell infiltra-
tion (Zhen et al. 2017; Wang et al. 2024f ). When followed by PD-L1 inhibitors, these 
primed tumors respond better, with increased T-cell activation and tumor regres-
sion observed in preclinical models of melanoma and lung cancer (Ou et  al. 2022; 
Zhang et  al. 2023d). In some studies, nanoparticles targeting CAFs have also been 
paired with chimeric antigen receptor T-cell (CAR-T) therapy (Dharani et al. 2024). 
By disrupting CAF-mediated barriers and reducing the immunosuppressive cytokine 
environment, CAF-targeting nanoparticles have been shown to improve CAR-T cell 
infiltration and efficacy in solid tumors (Zhang et al. 2023e; Liu et al. 2023b).

Tailoring nanomaterials to target CAF subtypes in cancer immunotherapy

Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells that 
exhibit distinct phenotypes and functions depending on the tumor context. The 
primary CAF subtypes identified in various cancers include myofibroblastic CAFs 
(myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting CAFs (apCAFs) 
(Caramelo et al. 2023; Melchionna et al. 2023). Each subtype contributes differently 
to tumor progression, ECM remodeling, and immune modulation (Schütz et al. 2023; 
Chen et al. 2024a; Vaish et al. 2021). Consequently, a “one-size-fits-all” approach to 
targeting CAFs is inadequate, instead, nanomaterials must be tailored to interact with 

Table 3  Summary of immunomodulatory effects and combination therapies

Targeted 
immune cell

Nanomaterial 
type

Mechanism of 
action

Combination 
strategy

Outcome References

T cells FAP-targeted 
liposomes, 
AuNPs

Downregulate 
TGF-β, IL-6

Combined with 
PD-L1 inhibitors

Enhanced T-cell 
infiltration, 
increased tumor 
regression

Lu et al. (2023); 
Feng et al. (2024); 
Zhang et al. 
(2023f ); Orlowski 
et al. (2018)

Macrophages Polymeric IL-6 
inhibitor NPs

Shift M2 to M1 
macrophage 
phenotype

Combined with 
immune check-
point blockade

Increased pro-
inflammatory 
macrophages, 
reduced 
immune sup-
pression

Pradhan et al. 
(2023); Gong et al. 
(2024); Feng et al. 
(2024)

MDSCs CCL2-inhibiting 
nanoparticles

Reduce MDSC 
recruitment

Pre-treatment 
for CAR-T 
therapy

Enhanced CAR-T 
cell infiltration 
and efficacy

Yang et al. (2021); 
Yazdimamaghani 
et al. (2025); Yong 
et al. (2019)

CAF/TME modu-
lation

TGF-β 
inhibitor-loaded 
liposomes

Modulate 
cytokine envi-
ronment, reduce 
CAF activation

Combined with 
PD-1 inhibitors

Improved check-
point efficacy, 
reprogrammed 
TME

Lo et al. (2024); 
Cherukula et al. 
(2019); Vienot et al. 
(2022)
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specific CAF subtypes to achieve optimal therapeutic effects (Zhang et  al. 2024d; 
Yamamoto et al. 2023).

. Therefore, integrating tumor-specific CAF targeting into nanomaterial design can 
enhance the precision and therapeutic efficacy of nanomedicine.

Targeting myCAFs

myCAFs are characterized by the expression of α-smooth muscle actin (α-SMA) and are 
primarily involved in ECM production and stiffening, creating a physical barrier that 
hinders drug penetration and immune cell infiltration (Kearney et al. 2024). This CAF 
subtype is particularly abundant in desmoplastic tumors such as pancreatic and breast 
cancers (Burley et al. 2022; Zeltz et al. 2019). To specifically target myCAFs, nanopar-
ticles can be functionalized with ligands or antibodies against α-SMA or other ECM-
associated proteins highly expressed by myCAFs (Yang et  al. 2021; Priwitaningrum 
et al. 2016). For instance, nanoparticles conjugated with α-SMA-targeting peptides have 
shown promise in preclinical studies by accumulating selectively within myCAF-rich 
regions, reducing ECM density, and enhancing therapeutic penetration (Zheng et  al. 
2023b). In a preclinical study by Tista Roy Chaudhuri and his colleagues, a nanoparticle 
platform conjugated with α-SMA-targeting antibodies demonstrated selective accumu-
lation in myCAF-dense areas within pancreatic tumors in mouse models (Roy Chaud-
huri et al. 2016). This targeted approach reduced ECM stiffness, improved immune cell 
infiltration, and synergized with immune checkpoint inhibitors, suggesting a promising 
strategy for desmoplastic tumors.

Targeting iCAFs

iCAFs are characterized by high levels of FAP and the secretion of pro-inflammatory 
cytokines such as IL-6 and IL-8 (Yang et al. 2023b; Kearney et al. 2024), which promote 
an immunosuppressive environment by recruiting immunosuppressive cells and sup-
porting cancer cell survival (Liu et al. 2024c; Thorlacius-Ussing et al. 2024; Morgan et al. 
2023). iCAFs are prevalent in tumors with a strong inflammatory component, such as 
melanoma and certain gastrointestinal cancers (Ran and Chen 2024; Agorku et al. 2024; 
Picard et al. 2023). Nanoparticles can be modified with FAP-specific ligands, antibod-
ies, or small-molecule inhibitors to target iCAFs selectively (Rodponthukwaji et al. 2024; 
Zhang et al. 2024e). FAP-targeted nanoparticles have been shown to reduce the immu-
nosuppressive influence of iCAFs by delivering payloads that either silence cytokine 
production or modulate immune cell recruitment (Zhao et  al. 2024). FAP-targeted 
liposomes loaded with IL-6 and IL-8 siRNAs were shown to reduce pro-inflammatory 
cytokine levels in melanoma mouse models (Aslan et al. 2024; Barati et al. 2022), thereby 
diminishing immunosuppressive signaling within the TME and enhancing the efficacy 
of T-cell-based therapies (Salotto et al. 2022). This approach highlights the therapeutic 
potential of targeting iCAFs in inflammatory tumor environments.

Targeting apCAFs

apCAFs possess the unique ability to present antigens via MHC-II molecules but gen-
erally lack co-stimulatory signals, resulting in anergy or tolerance of T cells within the 
TME (Kerdidani et al. 2022; Macy et al. 2023). Targeting apCAFs is challenging but 
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potentially impactful, as modifying their interaction with immune cells could alter 
immune dynamics in favor of anti-tumor activity (No Author 2022; Macy et al. 2023). 
Nanoparticles designed to target MHC-II molecules or deliver agents that block 
inhibitory pathways within apCAFs could mitigate T-cell anergy (Srivastava et  al. 
2024; Liu et al. 2022b). For instance, nanomaterials conjugated with MHC-II blocking 
peptides or small molecules could reduce the suppressive effects of apCAFs on T-cell 
function, enabling more effective immune responses in tumors such as ovarian and 
gastric cancers where apCAFs are more prominent (Noureddine et  al. 2023; Zheng 
et  al. 2021). In ovarian cancer mouse models, MHC-II-targeted nanoparticles have 
been shown to interfere with apCAF-mediated T-cell anergy (Noureddine et al. 2023), 
thereby increasing T-cell activation and enhancing anti-tumor responses. Though in 
its early stages, this approach underscores the potential for highly specific targeting of 
CAF subtypes based on unique immune-modulatory properties.

Different tumor types in targeting strategies

The effectiveness of targeting strategies may vary significantly across different types 
of tumors (Table 4). For example, breast cancers with a high presence of iCAFs might 
benefit more from FAP-targeted therapies (Rodponthukwaji et  al. 2024), while pan-
creatic cancers, characterized by dense stromal barriers predominantly formed by 
myCAFs, might be better addressed with α-SMA-targeted approaches (Ferraz et  al. 
2020; Roy Chaudhuri et  al. 2016). Moreover, apCAFs play a notable role in ovarian 
cancer by inducing T-cell tolerance. Hence, MHC-II-targeted nanoparticles could be 
tailored to address T-cell anergy specifically in ovarian cancer models (Noureddine 
et al. 2023).

The role of CAF subtypes and their abundance can vary significantly between tumor 
types, necessitating tumor-specific targeting strategies (Huang et  al. 2023, 2024b). 
However, by incorporating tumor-specific CAF targeting into nanomaterial design, 
we can enhance the precision of nanomedicine and improve therapeutic outcomes in 
a range of tumor microenvironments in the future.

Table 4  Recent examples in CAF subtype-targeting nanomaterials

CAF subtype Marker Nanomaterial 
type

Tumor model Targeting 
strategy

Outcome Refs.

myCAFs α-SMA α-SMA-
targeted 
nanoparticle

Pancreatic, 
breast

ECM disruption Increased 
immune cell 
infiltration and 
reduced ECM 
stiffness

Roy Chaudhuri 
et al. (2016); 
Zhang et al. 
(2024f )

iCAFs FAP FAP-targeted 
liposomes

Melanoma, GI 
cancer

Cytokine 
silencing

Reduced 
immunosup-
pression and 
enhanced 
T-cell response

Ran and Chen 
(2024); Agorku 
et al. (2024); Pic-
ard et al. (2023)

apCAFs MHC-II MHC-II-tar-
geted nanopar-
ticle

Ovarian Immune 
modulation

Increased T-cell 
activation and 
reduced T-cell 
anergy

Noureddine et al. 
(2023; Marwedel 
et al. (2024)
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Enhancing nanoscale drug delivery systems for targeting cancer‑associated 
fibroblasts
Nanoscale drug delivery systems offer numerous advantages over traditional drug thera-
pies (Wang et al. 2024b; Jia et al. 2021). However, challenges remain, particularly regard-
ing their ability to effectively penetrate solid tumors, including proliferative connective 
tissue tumors (D’Aversa et al. 2024; Yunna et al. 2021). Therefore, it is essential to imple-
ment strategies that enhance the penetration and permeability of nanomedicines to 
improve drug delivery capabilities (Izci et al. 2022; Fang et al. 2020; Zhao et al. 2018). In 
this context, we present several enhanced delivery system approaches aimed at optimiz-
ing the targeting of CAFs within the TME (Fig. 3) Arranja et al. (2017).

Cutting‑edge gene delivery approaches for targeting CAFs and tumor cells

Traditionally, the study of DNA and RNA has been fundamental in biology. In one study, 
researchers developed a polymer known as polymeric vinyl resin (PVR) and combined 
it with plasmids encoding relaxin (RLN) to form lipid nanoparticle complexes (LPPR), 
aiming to enhance gene transfer efficiency and reduce toxicity. This approach resulted 
in the inhibition of CAF proliferation and tumor growth (Zhang et al. 2023f). 5-Fluo-
rouracil (5-FU), a DNA synthesis inhibitor, blocks the normal thymine nucleotide bio-
synthesis pathway, hindering the growth and division of tumor cells and CAFs; however, 
it also affects normal cells (Gong et al. 2023). In a study conducted by Handali and col-
leagues, a novel folate liposome was found to deliver fluorouracil more effectively to 
cancer cells while reducing toxicity (Handali et  al. 2019). Similarly, Jain et  al. discov-
ered that a specific type of microRNA can enhance the sensitivity of colorectal cancer 
to radiotherapy by regulating tumor cell apoptosis and DNA damage repair pathways 
(Jain et al. 2024). In the research by Sheng et al., a CAF-targeted poly (lactic-co-glycolic 
acid) (PLGA) nanoemulsion was utilized to simultaneously deliver doxorubicin (DOX) 
and small interfering RNA (siRNA) targeting hepatocyte growth factor (HGF) for chem-
otherapy and gene therapy. Remarkably, the delivered siRNA reduced HGF expression 
in remaining CAFs, effectively overcoming chemotherapy-induced upregulation of HGF 
mRNA and preventing the increase of CAFs through an autocrine HGF feedback loop 
(Shen et  al. 2023). These synergistic effects led to significant inhibition of tumor pro-
liferation, migration, and invasion, as well as improved tumor permeability. In a nut-
shell, nanomaterials offer unique advantages when used in combination with traditional 

Fig. 3  A Nanomedicines and tumor targeting. Nanomedicines must overcome various barriers to achieve 
efficient tumor-targeted drug delivery. B Mechanisms of tumor targeting mediated by nanomedicine, 
passive, active, triggered. Reproduced from Arranja et al. (2017), Copyright © 2017 by the authors
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cancer therapies such as chemotherapy, radiotherapy, and immunotherapy (Guo et  al. 
2023; Hou et al. 2019; Truffi et al. 2019). By facilitating targeted delivery and controlled 
release of therapeutic agents, nanomaterials can enhance treatment efficacy while poten-
tially reducing systemic toxicity (Andoh et al. 2024; You et al. 2018). Nanoparticles such 
as liposomes and polymeric nanoparticles have been successfully used to encapsulate 
chemotherapeutic agents like docetaxel and doxorubicin, enhancing drug accumulation 
in tumor tissues and minimizing exposure to healthy cells (Beheshtizadeh et al. 2024; Xu 
et al. 2024a). Clinical trials have demonstrated that such nanoparticle formulations can 
significantly reduce cardiac toxicity commonly associated with doxorubicin (Chen et al. 
2024b). Admittedly, nanoparticles designed to deliver cytokines such as IL-2 or check-
point inhibitors such as PD-L1 blockers directly to the tumor microenvironment have 
shown promise in preclinical models (Zhang et al. 2023g; Chao et al. 2024). These strate-
gies help to activate and sustain immune responses locally, potentially overcoming the 
immunosuppressive TME and leading to better clinical outcomes.

Furthermore, siRNA, a type of small RNA, can inhibit gene expression by interfering 
with the stability and translation of targeted mRNA molecules. Numerous studies have 
demonstrated that siRNA can be encapsulated within liposomes to inhibit gene expres-
sion in tumor cell (Pei et  al. 2019; Sohn 2020). However, there are only a few studies 
showing that siRNA may also act on CAFs to inhibit their biological functions (Suh 
et al. 2020; Hu et al. 2024b), indicating a need for further research in this area. Lastly, 
researchers have developed a dual-labeled nanoprobe based on small extracellular vesi-
cles (sEVs) that can be used for tumor detection and diagnosis (Santos-Coquillat et al. 
2022). This technology also has potential as a valuable tool for studying the biological 
behaviors of nanosystems in drug delivery, which we believe holds significant applica-
tion value for future research.

Applications of small‑molecule drugs and their carriers in targeting cancer‑associated 

fibroblasts

Currently, numerous small-molecule drugs are utilized in cancer treatment and to 
improve TME (Liu et al. 2019a; Bromma et al. 2020). This highlights the advantages of 
small-molecule drugs in targeting CAFs and contributing to cancer immunotherapy. In 
this section, we summarize recent advancements in small molecule-loaded drug delivery 
systems designed to target CAFs.

Nanodrug carriers, such as Cellax-DTX nanoparticles, deliver chemotherapy drugs 
with high specificity to CAFs, promoting their apoptosis and modulating the TME (Ern-
sting et al. 2015). Furthermore, Sitia and colleagues developed functionalized H-ferritin 
nanocages combined with fragments of fibroblast activation protein (FAP) antibodies, 
creating highly specific drug carriers with strong affinity for CAFs (Sitia et  al. 2021). 
Similarly, Duan designed a dual-targeted liposome-hybrid micelle system (RPM@NLQ) 
triggered by matrix metalloproteinase (MMP), which sequentially delivers quercetin 
(Que) and paclitaxel (PTX) to CAFs. This system downregulates Wnt16 expression in 
CAFs, thus enhancing fibrosis reduction (Duan et al. 2022). Additionally, a specialized 
nanoemulsion (NE) system has been developed to deliver the anti-fibrotic drug fraxinel-
lone (Frax) to CAFs (Santos-Coquillat et al. 2022). Researchers observed that Frax NE, 
when combined with tumor-specific peptide vaccines, may represent an effective and 
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safe treatment strategy (Santos-Coquillat et al. 2022). Other small-molecule compounds, 
such as superparamagnetic iron oxide nanoparticles (SPIONs), target fibroblast growth 
factor 2 (FGF2) precursors in CAFs, inhibiting their production and enhancing the effi-
cacy of gemcitabine (Mardhian et al. 2020).

Clara et al. demonstrated that hydrogen peroxide plays a crucial role in the interaction 
between gold–iron alloy nanoparticles and CAFs (Faria et al. 2023). Additionally, some 
macromolecular systems, such as the nano-composite hydrogel developed by Liu et al., 
and the peptide–doxorubicin (GFLG–DOX) conjugate of polyamidoamine (PAMAM) 
dendritic macromolecules designed by Rashed M et  al., have shown the potential to 
improve chemotherapy drug penetration and efficacy without harming healthy tissues 
(Liu et al. 2019c; Almuqbil et al. 2020).

Innovative strategies for targeting cancer‑associated fibroblasts in immunotherapy

Targeting CAFs has emerged as a critical strategy in cancer immunotherapy. Recent 
advances have led to the development of antibodies and other ligands that specifically 
bind to receptors on the surface of CAFs, inducing their apoptosis or inhibiting their 
proliferation. For instance, Liang et al. developed a peptide-assembled nanosystem that 
effectively inhibits CAF metastasis and prostate cancer progression (Lang et al. 2019). 
Additionally, strategies to reprogram CAFs are being explored. One such approach 
involves metabolic reprogramming, where the regulation of glucose uptake and lactate 
production forms the basis for new drug-targeting strategies (Li et  al. 2021b; Becker 
et  al. 2020). For example, Theivendran et  al. utilized DMON-P to reprogram CAFs, 
downregulating CAF-specific biomarkers and successfully delivering doxorubicin (Dox) 
to inhibit tumor growth (Theivendran et al. 2024). Furthermore, DNA-targeted vaccines 
show great promise in CAF-targeted immunotherapy (Geng et  al. 2019). Geng et  al. 
developed a vaccine targeting both fibroblast activation protein alpha (FAPα) and the 
tumor antigen survivin, which not only eliminated CAFs, but also regulated the tumor 
microenvironment, thereby enhancing T-cell-mediated anticancer effect (Geng et  al. 
2020). Another notable study by Hu and colleagues involved the use of CAFs as antigens 
to create vaccines that stimulated an immune response specifically targeting CAFs. Their 
experiments showed success in both in vitro and in vivo models, demonstrating the fea-
sibility of using CAFs as vaccine antigens in cancer therapy, a concept that warrants fur-
ther exploration (Hu et al. 2024b). Moreover, activated T-cell therapies are also gaining 
attention. One study introduced activated T cells into the tumor site, where they specifi-
cally targeted CAFs, leading to reduced tumor growth (Pei et al. 2019). Liposomes serve 
as effective carriers for CAF-targeted therapies as well. For instance, Li et al. conjugated 
single-chain variable fragment (scFv) antibodies to liposomes, utilizing the high-affinity 
binding of monoclonal antibodies to enhance the penetration of liposomes into tumor 
tissues, thereby improving the efficacy of colorectal cancer treatment (Li et al. 2021c). 
Furthermore, a novel co-loaded liposome targeting the insulin receptor (IR) was shown 
to reduce CAF activity, thus inhibiting tumor progression (Sun et al. 2024c). In another 
study, Lee et al. used the anti-fibrotic drug nintedanib to decrease CAF activation and 
proliferation. Nintedanib was found to block the platelet-derived growth factor recep-
tor beta (PDGFRβ) signaling pathway, reducing the secretion of interleukin-6 (IL-6) and 
thereby inhibiting CAF function (Lee 2023).
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Nanomaterials in clinical trials

While preclinical studies have demonstrated the promise of nanomaterials in targeting 
CAFs and modulating the TME, translating these findings into clinical practice presents 
significant challenges. Here, we review the current status of nanomaterial-based thera-
pies in clinical trials and discuss specific nanomaterials that have progressed to advanced 
preclinical or clinical trial phases, as well as the challenges they face in clinical transla-
tion (Table 5). Gold nanoparticles, for instance, have been tested in Phase I/II trials for 
their efficacy in targeting tumor microenvironments without adverse systemic effects 
(Sun et al. 2024d; Dai et al. 2018). Liposome-based therapies have also reached clinical 
trials, showcasing potential in targeted drug delivery to reduce tumor resistance (Li et al. 
2024e; Zhang et al. 2024g). Liposomal formulations, such as Doxil (doxorubicin encap-
sulated in liposomes), have already been approved for cancer therapy and have inspired 
further development of liposome-based therapies in cancer immunotherapy (Xu et  al. 
2024b). Liposomes can encapsulate immunotherapeutics and target them to specific 
cells within the TME, improving treatment specificity and reducing systemic toxicity 
(Chen et al. 2016). Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are widely used 
in drug delivery due to their biocompatibility and ability to encapsulate both hydropho-
bic and hydrophilic drugs (Shen et al. 2023; Ye et al. 2020). Clinical trials are ongoing to 

Table 5  Key nanomaterial-based therapies currently in clinical trials

Nanomaterial 
type

Therapy name 
(if available)

Clinical trial 
phase

Cancer 
targeted

Mechanism of 
action

Refs

Liposomes Doxil Approved Liver cancer, 
breast

Encapsulation of 
doxorubicin for 
tumor targeting 
and reduced 
toxicity

Xu et al. (2024b); 
Zhao et al. (2020)

Liposomes Pembrolizumab-
liposome

Phase II Melanoma, 
NSCLC

Delivery of 
checkpoint 
inhibitor for 
improved 
immune activa-
tion

Sui et al. (2024); 
Zhang et al. (2013)

Polymeric nano-
particles

PLGA-paclitaxel Phase I/II Melanoma, 
rectal cancer

Controlled 
release of pacli-
taxel to reduce 
systemic side 
effects

Shen et al. (2023); 
He et al. (2024)

Gold nanopar-
ticles

AuNP-IL-12 
conjugate

Preclinical Pancreatic, 
breast

Direct immune 
modulation by 
targeting CAFs 
and promoting 
immune cell 
infiltration

Agarwal et al. 
(2024); Luo et al. 
(2024a)

Iron oxide nano-
particles

Ferumoxytol Phase II Brain, liver MRI-guided 
delivery and 
hyperthermia-
induced tumor 
suppression

Cristofolini et al. 
(2020); Nicolás-
Boluda et al. 
(2020)

Dendrimers Dendrimer-
methotrexate

Phase I Leukemia, lym-
phoma

Controlled 
release to mini-
mize toxicity and 
enhance tumor 
targeting

Feeney et al. 
(2022); Palombar-
ini et al. (2021)
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assess the efficacy of PLGA nanoparticles in delivering checkpoint inhibitors directly to 
tumors, which could increase immune activation within the TME.

One of the primary challenges in nanomedicine is ensuring biocompatibility and 
minimizing toxicity (Chandrasekar et al. 2024; Damani et al. 2024; Xu et al. 2024c). For 
instance, while liposomes and PLGA nanoparticles have generally favorable biocompat-
ibility profiles (Mirza-Aghazadeh-Attari et al. 2022; Ali et al. 2021), other nanomateri-
als, such as metal nanoparticles, can induce oxidative stress or accumulate in organs, 
posing risks of long-term toxicity (Kahil et  al. 2024; Liang et  al. 2024b). In addition, 
efficiently delivering nanomaterials to CAFs and other TME components remains dif-
ficult (Zheng et al. 2023a). The dense ECM created by CAFs can act as a physical bar-
rier, limiting the penetration of nanoparticles into tumor tissues (Zhang et al. 2024f; Ye 
et al. 2024). Techniques like size optimization and ligand-mediated targeting are being 
explored to improve intratumoral delivery and CAF specificity (Singh et al. 2024a; Kaps 
and Schuppan 2020). However, advancements in nanotechnology and regulatory science 
are expected to address these hurdles, enhancing the translational pathway for nanoma-
terials in cancer therapy (Luo et al. 2024; Guo et al. 2024b; Chen et al. 2024c). Continued 
collaboration between researchers, clinicians, and regulatory bodies is crucial to harness 
the full potential of nanomedicine.

Conclusion and future perspectives research
The past decades has consistently highlighted the multifaceted role of CAFs in tumor 
development and progression. CAFs not only contribute to the formation of the 
ECM that constitutes the tumor stroma, but also secrete growth factors, chemokines, 
exosomes, and metabolites that influence virtually all aspects of tumor biology, includ-
ing drug resistance and treatment responses (Rizzolio et al. 2022). As scientific under-
standing of CAFs deepens, novel avenues for targeted immunotherapy based on their 
unique properties are emerging. A growing body of evidence suggests a significant cor-
relation between programmed death-ligand 1 (PD-L1) expression levels and the degree 
of CAF infiltration in tumors. Certain CAF subsets have been shown to suppress T-cell 
activity by secreting PD-L1, thereby aiding tumor cells in evading immune detection and 
destruction (Yin et al. 2023; Choueiri et al. 2021; Gorchs et al. 2020). This highlights the 
importance of further research into the interplay between PD-L1 and CAFs to unravel 
the regulatory mechanisms underlying the tumor immune microenvironment. Under-
standing these mechanisms will be pivotal for developing more effective immunothera-
pies that can enhance the body’s ability to combat tumors. Moreover, CAFs exert a direct 
influence on tumor cell behavior and characteristics through the secretion of growth fac-
tors, the activation of protein receptor signaling pathways, and the modulation of gene 
expression. Targeting these critical pathways may offer a promising strategy for combat-
ing cancer. Here, we summarize key drugs and therapies currently under investigation or 
in clinical use that aim to inhibit the pro-tumorigenic functions of CAFs (Table 6).

Table  6 provides a comprehensive overview of key targets and therapeutic strate-
gies involving CAFs, highlighting innovative approaches in cancer immunotherapy. It 
enumerates targets like PD-L1, TGF-β, and IGF-1 critical in modulating CAF activity 
within the tumor microenvironment. Innovative strategies include monoclonal antibod-
ies such as adebrelimab targeting PD-L1 to enhance T-cell-mediated immune responses, 
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and inhibitors like galunisertib aimed at suppressing CAF activation by inhibiting TGF-
β. Small-molecule inhibitors and therapeutic antibodies explore potential in attenuat-
ing CAF-induced tumor activities, suggesting novel avenues for precision medicine 

Table 6  Key targets and therapeutic strategies involving CAFs

Target Function Drug Mechanism Preclinical or 
clinical trials

Refs.

PD-L1 Promote T cell 
mediated

Adebrelimab 
(A humanized 
monoclonal 
antibody with 
high affinity)

PD-L1 antibody Phase II Yin et al. (2023)

PD-L1 AND 
VEGFR

Inhibition of 
tumor escape 
and angiogenesis

Avelumab and 
axitinib

PD-L1 antibody 
AND tyrosine 
kinase inhibitor 
(TKI)

Phase III Choueiri et al. 
(2021)

TGF-β Inhibit CAFs 
activation

Galunisertib Active inhibitor Phase II Faivre et al. (2019)

TGFb Inhibition of 
autologous lipase 
activity

Autogenous 
lipase inhibitor 
IOA-289

Active inhibitor Preclinical Pietrobono et al. 
(2024)

IGF-1 Blocking the sig-
nal transduction 
between IGF-1 
and its receptor

An inhibitor Active inhibitor Preclinical Spandau et al. 
(2021)

FGFR2 Attenuate tumor 
activity

Futibatinib FGFR1-4 inhibitor Phase I Goyal et al. (2023)

Pin1 Antibody binding 
to CAF

DNA encoding 
microcapsule 
system (DMS)

Pin1 inhibitor/
active inhibitor

Preclinical Liu et al. (2022c)

Zinc finger bind-
ing protein 1 
(ZBP1)

Inhibition of 
tumor growth 
and metastasis 
by inhibiting 
mTOR signaling 
pathway

CBL0137 A small-molecule 
compound/acti-
vator

Preclinical Zhang et al. 
(2022a)

Hypoxia induc-
ible factor 1, 2 
(HIF1、2)

Specifically cleave 
DNA sequences

CRISPR-Cas9 Dual enzyme 
system

Preclinical Garcia (2022)

HIF2 Inhibit hif2, 
inhibit cancer 
cells

Belzutifan A small-molecule 
compound/
active inhibitor

Phase III Garcia (2022)

Wnt2 molecule Enhance the 
efficacy of ICI

Anti Wnt2 mono-
clonal antibody

Anti Wnt2 mono-
clonal antibody

Preclinical Huang et al. 
(2022b)

Integrin αvβ3 Inducing apop-
tosis of triple 
negative breast 
cancer cells

ProAgio Protein Preclinical Sharma et al. 
(2021)

Galectin-1 (Gal-1) Downregulated 
the production 
of plasminogen 
activator inhibitor 
2 (PAI-2)

Therapeutic 
inhibitors (LLS30)

Active inhibitor Preclinical Tsai et al. (2022)

CAFs and T cells Reduce the 
proliferation and 
migration of 
fibroblasts and 
reduce inflam-
mation

Calcipotriol Vitamin D 
analogs

Phase II Gorchs et al. 
(2020)
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in diverse cancer treatments. These strategies underscore the importance of targeting 
CAFs to disrupt their pro-tumorigenic functions and enhance therapeutic outcomes.

While nanomaterials can modulate immune responses and enhance drug delivery, 
their interaction within the complex TME requires a deeper understanding to avoid 
unintended immunosuppressive effects (D’Aversa et al. 2024; Chen et al. 2016; Mardhian 
et al. 2018; Avgoustakis and Angelopoulou 2024). Moreover, the safety of nanomateri-
als—particularly in terms of biodegradability and long-term toxicity—remains a major 
concern, necessitating rigorous clinical validation (Yuan et  al. 2023; Mu et  al. 2021; 
Kesharwani et al. 2024). The prolonged presence of nanoparticles in the body may lead 
to unforeseen complications, requiring careful management of these risks (Mardhian 
et al. 2018; Zhang et al. 2024h; Lee et al. 2024). Despite these challenges, nanomaterials 
offer revolutionary potential in cancer therapy (Dasgupta et al. 2023). Future research 
should focus on overcoming these limitations through the development of more spe-
cific, efficient, and biocompatible nanomaterials (Zheng et al. 2022; Zhang et al. 2022b; 
Affinito et al. 2024; Tan et al. 2022). This includes improving delivery systems, explor-
ing combination therapies, and enhancing our understanding of the TME (Sung and Lee 
2024; Tang et al. 2021; Mu et al. 2024; Choi et al. 2024). A promising avenue involves 
the development of dual-functional nanomaterials that target both CAFs and immune 
checkpoints, which could reactivate the immune system while disrupting the supportive 
TME (Geng et al. 2023; Liu et al. 2024b). Moreover, we recently discovered that some 
studies have explored the application of traditional Chinese medicine ingredients in tar-
geted delivery, which represents another effective treatment method (Zheng et al. 2023a; 
Zhang et al. 2020b) However, due to limited current research, there is not sufficient data 
to extensively discuss this system.

Scaling up the production of nanomaterials while maintaining stringent quality and 
safety standards remains a critical challenge in advancing them from the laboratory to 
clinical settings (Pednekar et al. 2024). Regulatory approval processes are also complex 
due to the novel properties of nanomaterials, requiring tailored assessment protocols 
(Singh et al. 2024a, 2024b; Tagaras et al. 2024). Precision engineering of nanomaterials 
and advanced targeted delivery systems could help address these challenges (Kesharwani 
et al. 2024; Liu et al. 2024d; Zheng et al. 2024). Moreover, developing combination thera-
pies that incorporate nanomaterials may maximize therapeutic efficacy while minimiz-
ing side effects by enabling lower dosages and more targeted action (Chen et al. 2024d; 
Zare et al. 2024; Overchuk et al. 2023).

To overcome these hurdles, interdisciplinary collaboration between researchers, 
clinicians, and regulatory bodies will be crucial (Han and Santos 2024; Cheng et al. 
2024c). Integrating emerging technologies such as machine learning for predictive 
modeling of nanomaterial interactions within the TME could accelerate the develop-
ment of effective therapies (Gao et al. 2024; Leong et al. 2021). Additionally, artificial 
intelligence (AI) could revolutionize nanomaterial design by optimizing nanoparticle 
properties for enhanced delivery and efficacy based on vast datasets that identify bio-
markers (Gao et al. 2024; Bag et al. 2024; Mahajan and Bhattacharya 2024). In paral-
lel, green nanomaterials, designed with sustainability in mind, offer an eco-conscious 
alternative for cancer treatment (Zhou et al. 2024b; Yang et al. 2023c). These materi-
als utilize biodegradable components that pose minimal risk to the environment and 
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human health (Montazersaheb et al. 2024; Balčiūnaitienė et al. 2022). Their biocom-
patibility and reduced toxicity make them ideal candidates for long-term therapeu-
tic applications, contributing to both patient outcomes and global sustainability goals 
(Naseer et al. 2022; Zhong et al. 2021; Zhang and Ge 2020).
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