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trials have shown that liposomes are pharmacologically and pharmacokinetically more
efficient than drug-alone formulations in treating acute myeloid leukemia, hepatitis A,
pain management, ovary, gastric breast and lung cancer, among others.

Conclusion: Liposomal formulations are less toxic than drugs alone and have bet-

ter pharmacological parameters. Although they seem to be the first choice for drug
delivery systems for various diseases, further research about dosage regimen regarding
dose and time needs to be carried out.
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Background

Many conventional drugs exhibit poor pharmacokinetics, limited bioavailability and
a high toxicity, all of which restrain their use. To overcome these issues and improve
the therapeutic indexes of the drug, the emergent fields of nanotechnology and nano-
medicine have made significant progress in detection, diagnosis and treatment of sev-
eral diseases at clinical level (Li et al. 2014; Yingchoncharoen et al. 2016; Signorell et al.
2018). In fact, thanks to nanoparticles and liposomes, it has been possible to decrease the
toxicity and improve the pharmacokinetics parameters, such as distribution, increased
circulation time, targeted controlled release, increased intracellular concentration, and
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enhanced solubility and stability of drugs in the organism (Medina-Alarcén et al. 2017;
Ventola 2017). All these advantages have been reached by using drug delivery systems
with 1-100 nm diameter nanoparticles, where a large surface leads to an increase in
cellular interactions and multiple alterations of surface properties (Ud Din et al. 2017;
Senapati et al. 2018; Gonda et al. 2019). Moreover, by co-delivering multiple drugs,
treatments with NPs have also facilitated synergistic therapies and avoided drug resist-
ance (Casals et al. 2017). For example, in CPX-351, a liposomal formulation, cytarabine
and daunorubicin are packed together at a 5:1 molar ratio within 100-nm-diameter
liposomes (Gergis et al. 2013; Cortes et al. 2015; Lancet et al. 2014).

Liposomes were discovered by Alec D. Bangham in 1965 (Allen and Cullis 2013) and
were the first approved class of therapeutic NPs for cancer treatment. They still represent
a large proportion of clinical-stage nanotherapeutics (Shi et al. 2017; Bourquin et al. 2018)
due to their biodegradable, biocompatible, non-toxic, and non-immunogenic composition
(Bozzuto and Molinari 2015; Zamani et al. 2018). The amphiphilic phospholipid bilayer
of liposomes has close resemblance to the mammalian cell membrane, enabling efficient
interactions between liposomes and cell membrane and subsequently effective cellular
uptake (Gonda et al. 2019). In addition, liposomes may be added with ligands to increase
efficiency and specifically target damaged cells, thus improving liposome pharmacokinet-
ics and their ability to pass through target membranes, reaching high concentrations inside
cells while reducing toxicity and enhancing treatment efficacy (Li et al. 2014; Ud Din et al.
2017; Zamani et al. 2018; Hussain et al. 2017; Lombardo et al. 2016; Fouladi et al. 2017;
Maranhéo et al. 2017; Miller et al. 2016). For instance, MM-302, an antibody-liposomal
doxorubicin conjugate, specifically targets HER2 overexpressing cells (Miller et al. 2016).
Liposome encapsulation may reduce drug clearance by the immune and renal systems,
extending circulation time in the blood and increasing their availability (Bulbake et al.
2017). Another advantage of liposomes in their thermosensitive feature, i.e., an increase of
temperature (to 40—41 °C) causes packing changes in the bilayer favoring the release of the
encapsulated drug. These thermo-devices favor the specific release of a large amount of
the cytotoxic agent to a heat-treated tumor site when using an external heat source, avoid-
ing damage to the surrounding normal tissue (Nardecchia et al. 2019).

The first nanosized liposomal product to obtain regulatory approval in the US was
Doxil®, which was approved in 1995 for the treatment of ovarian cancer and AIDS-
related Kaposi’s sarcoma. Later, in 1996 the US FDA approved DaunoXome®, manufac-
tured by NeXstar Pharmaceuticals, for the delivery of daunorubicin to treat advanced
HIV-associated Kaposi sarcoma. Subsequently, more products have become available for
the treatment of cancer and different diseases (Bulbake et al. 2017).

The most commonly investigated nanoparticles are phospholipids-based carriers,
micelles, polymeric nanoparticles based on poly(lactide-coglycolide) (PLGA), polybu-
tylcyanoacrylate, poly(isohexyl cyanoacrylate), poly(amine-co-ester), chitosan nano-
particles (Chaudhuri and Straubinger 2019; van Rijt et al. 2014), cellulose nanocrystals
systems (Mohanta et al. 2019), viral vectors (Gomes et al. 2017), self-assemble proteins
(Colton et al. 2014), carbon nanotubes (Kaur et al. 2019), dendrimers (Hudson 2001),
core—shell and metallic NPs (Wu et al. 2008), Fig. 1. However, for nanomaterial-based
therapeutics, liposomes have been the most successful formulation for clinical appli-
cation to date (Gonda et al. 2019), and the sterically stabilized liposomal formulations
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Fig. 1 Nanoparticles commonly used as drug delivery systems. a Liposomes: biomimetic structure,
encapsulate hydrophobic and hydrophilic drugs. Schematic image done with Adobe® Photoshop® CS6. b
Viral vector: schematic representation of viral adenovirus. From Gomes et al. (2017). ¢ Self-assembled proteins:
ribbon diagram representing the structure of the ferritin protein. From Colton et al. (2014). d Polymeric
nanoparticle [image from van Rijt et al. (2014)]. e Metallic nanoparticle: magnetic and non-immunogenic
sphere, rod or cage nanoparticles (schematic image done with Paint 3D®). f Single-walled carbon nanotube:
efficient drug-loading capacity because of ultrahigh surface area. Diameter range from 0.4 to 2 nm for
SWCN and 2-100 nm for MWCN. From Kaur et al. (2019). g Astruc’s 54-ferrocene dendrimer. From Hudson
(2001). h Polystyrene-coated magnetic NPs with core/shell structure. Modified from Wu et al. (2008). i Micelle
formulation as drug delivery system. Public domain

currently dominate the clinical landscape with FDA-approved products (Chaudhuri and
Straubinger 2019). The success of liposomes in clinics is based on their versatility and
their characteristics, such as their structural similarity to mammalian cell membranes
and their capability to encapsulate either hydrophobic or hydrophilic drugs (Gonda et al.
2019), among the other features described above.

In recent years, many clinical trials using liposome as a drug delivery system to treat
several diseases have been published. This review discusses the emerging research and
clinical developments in liposome therapeutics, as well anoverview of the liposome

characteristics and the distribution of liposomal clinical trials worldwide.

Liposomes: an overview

Liposomes are bilayer spherical vesicles composed by phospholipids and cholesterol
that in water create at least one lipid bilayer surrounding an aqueous core, which may
encapsulate both hydrophilic drugs (e.g., Doxil®, encapsulated doxorubicin in the aque-
ous core) and hydrophobic compounds (e.g., AmBisome®, trapped amphotericin B)
immersed in the lamellae by Van der Waals forces (Senapati et al. 2018; Gonda et al.
2019; Gao et al. 2018), see Fig. 2.
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Fig. 2 Schematic structure of a stable antibody-liposome encapsulating hydrophobic and hydrophilic drugs.
Hydrophilic drugs like doxorubicin can be encapsulated in the agueous compartment. Hydrophobic drugs
like amphotericin B, paclitaxel, and docetaxel, can be encapsulated in the non-polar compartment. Liposome
size varies between 20 nm to several hundred microns. Pharmacokinetics depends directly of the size
(schematic image done with Adobe® Photoshop® CS6)
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Fig. 3 a Chemical structure of hydrogenated soybean phosphatidylcholine (HSPC), a phospholipid used in
Doxil®, the first approved liposomal nanoformulation. Brackets indicate the polar and non-polar portions of
the phospholipid. b Scheme of the membrane permeability of liposomes with unsaturated phospholipids.
Blue figures represent charged compounds while orange ones have no charge: the circles represent the
polar head of phospholipids; bars, the fatty acid chains; hexagons, hydrophobic drugs; and triangles, the
hydrophilic drugs (schematic image done with Adobe® Photoshop® CS6)

Phospholipids are amphiphilic lipids that consist of a glycerol molecule bound to a
phosphate group (PO,*") and to two fatty acid chains that may be saturated or unsat-
urated (Pinot et al. 2014). The phosphate has also an ester bound with an organic
molecule, e.g., choline or ethanolamine (Monteiro et al. 2014) (Fig. 3). Phospholipids
are key components and provide specific characteristics to liposomes, i.e., the way of
encapsulating the compounds and the functionalization into the organism (Hussain
et al. 2017). Since phospholipids are the main biological cell membrane components,
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both liposomal and cell membranes can coexist during the release mechanism (Roth-
field 1971).

As we seen, liposome properties are affected not only by its composition, but also
by size, surface charge, number of lamellae, rigidity of the bilayer, surface modification
and method of preparation (Olusanya et al. 2018). For instance, the ammonium sulfate
method would render a high concentration of amphipathic drugs, such as doxorubicin,
similar to the pH gradient method for vincristine (Senapati et al. 2018). Another impor-
tant parameter for preparing self-aggregating amphiphiles such as surfactants, lipids and
liposomes, is the critical micelle concentration (CMC), i.e., the relatively narrow con-
centration range over which amphiphile dispersions show an abrupt change in physi-
cal properties. At concentrations below the CMC, the phospholipids are in monomeric
form; at the CMC, aggregation of the molecules produce micelles, and the physical prop-
erties of the dispersion show changes. The CMC values depend on intrinsic factors such
as structure of the hydrophobic and hydrophilic parts of the amphiphile molecule and
external factors such as medium temperature and composition (ionic strength, dielectric
constant, pH) (Priev et al. 2002). For the purpose of this review, only the physicochemi-
cal parameters of phospholipids affecting liposomes characteristics will be discussed.

The transition temperature of phospholipids (7) (the temperature at which phos-
pholipids shift from gel to liquid crystalline phase), is one of the main parameters in
the manufacture of liposomes (Zamani et al. 2018). T~ depends on the length of the
fatty acid chains, their degree of saturation, charge and head group species, as shown
in Table 1 (Li et al. 2014; Hussain et al. 2017; Monteiro et al. 2014). T~ determines the
fluidity and permeability of the liposome bilayer. In fact, at temperatures lower than
T the phospholipids are in gel phase, which has low fluidity and low permeability. In
contrast, at temperatures higher than 7, phospholipids are in liquid-crystalline phase,
having greater fluidity and permeability but low permeability to certain particles. Also,
as shown in Table 1, the longer the chain the higher the T is. The T, decreases, the
more double bonds. Thus, when compared at certain temperatures, bilayers with long
and saturated hydrocarbon chains are more rigid and less permeable than bilayers with
shorter and unsaturated chains (Monteiro et al. 2014; Lin and Gu 2014; Murthy et al.
2016; Kraft et al. 2014) (Fig. 2). The transition temperature and lipid composition influ-
ence the curvature of liposomes, i.e., a liposome whose diameter varies between 100 and
200 nm can be appreciated as a sphere whose curvature will be defined by a homogene-
ous surface perimeter. However, the surface of the liposome can actually present a rip-
ple phase depending mainly on the lipid composition and temperature that are directly
related to the aggregate state of the liposome. Therefore, the ripple phase can be consid-
ered as domains of ordered phases of liquid crystalline phase with the gel phase. Other
compound that can also modify the ripple phase is cholesterol, which directly affects the
fluidity of the liposome bilayer increasing fluidity in the core of the bilayer, but increas-
ing viscosity close to phospholipid headgroups. Thus, cholesterol produces similar
phases to liquid crystalline and gel phases, the so-called disordered and ordered phases.
Further studies on membrane fluidity of the liposomal dosage forms and their impact on
drug delivery may improve formulations and their efficacy. Therefore, the phase tran-
sition behavior of the lipid bilayers has been exploited to improve liposome aggrega-
tion, curvature of membrane (ripple phase), lipid transfer and drug release. Proper lipid
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compositions preserve the bilayer structure, as well as physical properties at body tem-
perature (37 °C), which are key considerations for liposome design (Riihling et al. 2017;
Vallejo et al. 2007).

Modifications of polar and non-polar regions of natural phospholipids have allowed
researchers to create a wide variety of synthetic phospholipids, which have proved to
be more stable (Monteiro et al. 2014; Agassandian and Mallampalli 2013). The surface
charge in liposomes depends on the phospholipid headgroup, and it can be negative,
neutral or positive. This may alter liposome stability, pharmacokinetics, biodistribution
and cellular uptake, see Table 1. Negatively charged phospholipids, such as DMPG or
DOPS, are recognized by macrophages and enter the cell via endocytosis at a faster rate
than neutral phospholipids, like HSPC and DOPE, resulting in a shorter circulation time.
A small negative charge may stabilize neutral liposomes increasing the electrostatic
repulsive forces, affecting the aggregation-dependent phagocytic uptake mechanism
(Olusanya et al. 2018; Kraft et al. 2014). On the other hand, cationic liposomes inter-
act with plasma proteins enhancing the uptake by the phagocytic system that promotes
clearance by the lung, liver or spleen. Moreover, uptake of liposomes with a positive
charge appears to be much higher than negative liposomes. Thus, negatively charged
lipid liposomes are common to most FDA-approved liposome formulations (Bourquin
et al. 2018; Zamani et al. 2018; Kraft et al. 2014; Merino et al. 2018).

Liposomes have a diameter ranging from 20 nm to more than several hundred
micrometers, as shown in Table 2. Particle size affects their pharmacokinetics, tis-
sue extravasation, tissue diffusion, hepatic uptake, kidney excretion, and clearance rate
from the site of injection (Zamani et al. 2018; Gao et al. 2018; Olusanya et al. 2018; Kraft
et al. 2014). Only liposomes of a mean diameter between 100 and 150 nm are able to
enter fenestrated vessels in the liver endothelium, secondary lymphoid structures, or
tumor microenvironments (Bourquin et al. 2018; Gao et al. 2018; Kraft et al. 2014).
Only liposomes with such a diameter can easily escape from blood vessel capillaries that
perfuse tissues, such as lung, heart, and kidney. On the other hand, particles less than
10 nm undergo renal filtration through the glomerular capillary wall and are not reab-
sorbed (Gao et al. 2018; Kraft et al. 2014; Merino et al. 2018). Furthermore, cell uptake
is most relevant to liposomes of 100-150 nm diameter. The immune system phagocy-
tosis is also important, since reduction of liposome diameter to 50 nm or below greatly
reduces phagocytosis clearance (Kraft et al. 2014; Merino et al. 2018). Thus, liposomes
within 50-100 nm, such as DaunoXome, avoid phagocytosis and have long blood cir-
culation time (Olusanya et al. 2018; Kraft et al. 2014). Therefore, the optimal range-size
is between 80 and 150 nm (Olusanya et al. 2018; Kraft et al. 2014; Merino et al. 2018;
Riaz et al. 2018). It has been demonstrated that larger liposomes can persist longer in the
injection site (Bourquin et al. 2018), such as Exparel® and DepoDur"", which are used for
pain control.

Cholesterol has an important role in the preparation and chemical properties of
liposomes. This molecule accommodates itself along with the phospholipid chain, with
its hydroxyl group close to the hydrophilic region and its aromatic rings parallel to the
fatty acid chain within the bilayer (Fig. 1) due to hydrophobic interactions. Fluidity and
water permeability decrease because of the increase in mechanical rigidity caused by
the dense rings (Yingchoncharoen et al. 2016; Monteiro et al. 2014; Sinatra et al. 2014).
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Various clinically approved liposomal formulations incorporating cholesterol are already
in the market (Table 2). Cholesterol acts as a cell membrane stabilizer: in its absence,
liposomes often interact with proteins, including albumin, transferrin, macroglobu-
lin and high-density lipoproteins. Such interaction destabilizes the structure of the
liposomes and consequently decreases their capacity as drug delivery systems (Ying-
choncharoen et al. 2016; Maranhio et al. 2017; Lu et al. 2013). Cholesterol is also crucial
for the structural stability of liposome membranes against intestinal environment stress
(Olusanya et al. 2018; Kraft et al. 2014).

Although their biocompatibility, biodegradability, and ability to encapsulate hydro-
philic, hydrophobic, and amphiphilic compounds are important advantages, one of the
major drawbacks of conventional liposomes is their rapid clearance from the blood-
stream (Senapati et al. 2018; Gangadaran et al. 2018), which shortens the blood circu-
lation time. To overcome this drawback, several approaches have been used. Small
fractions of hydrophilic polymers, such as polyethylene glycol (PEG), are used as sur-
face coatings in order to extend blood circulation half-life from few minutes (conven-
tional liposomes) to several hours (stealth liposomes). In fact, PEGylated liposomes with
a mean 100-150 nm diameter reduce the interaction of liposomes with plasma proteins
such as opsonins (Yingchoncharoen et al. 2016; Senapati et al. 2018; Bourquin et al.
2018; Kraft et al. 2014; Lamichhane et al. 2018). Thus, PEG prevents liposome opsoni-
zation and consumption by the reticuloendothelial system (RES) since it entangles 2—3
molecules of water per oxyethylene unit, which may increase 5-10 times the apparent
molecular weight. This improves solubility and decreases the aggregation and the immu-
nogenicity of the drug, leading to 10 times longer circulation time and an increase of
liposome accumulation in damaged tissues (Yingchoncharoen et al. 2016; Maranhdo
et al. 2017; Li et al. 2013). This PEG-technology has been successfully proven in Doxil®
(Bulbake et al. 2017) and there are various clinically approved stealth and non-stealth
liposomal formulations with or without cholesterol in the market (Table 2), as compared
in the following section.

In summary, the properties of the membrane and general structure of liposomes
depend on (a) the nature of the lipid, either natural or synthetic; (b) the phospholipid
polar headgroup and its charge; (c) the length and degree of unsaturation of the fatty
acids; (d) the T, the temperature before and after the liposome synthesis, and (e) the
addition of other compounds to the membrane or surface of the liposome such as cho-
lesterol, PEG, proteins, ligands and/or antibodies (Bozzuto and Molinari 2015; Mara-
nhio et al. 2017; Sercombe et al. 2015). The manipulation and design of all the factors
mentioned above make liposomes versatile and capable of a wide range of functions.
This has made liposomes one the most explored and used release system to address dif-
ferent functions and specific purposes for the treatment of cancer and other diseases
(Yingchoncharoen et al. 2016; Maranhio et al. 2017; Monteiro et al. 2014; Meng et al.
2016; Rose et al. 2014). Currently, there is a wide variety of liposome formulations
that are in preclinical and clinical trials, while some others are already being used as
approved therapies, as will be discussed in the next section.
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Clinical trials: efficacy and toxicity

A literature search regarding clinical studies was carried out in PubMed during April
and May 2018 using the search term “liposome”. The sort function and the filters were
used to show only the most recent clinical trials in the PubMed search.

The inclusion criteria were:

+ The study must be a phase I, II or III clinical trial.

« The study must report either the side effects or the efficacy of the liposomal formula-
tion.

« The article publishing date must be after 2013.

Pain management: bupivacaine

Liposomal bupivacaine (Exparel®, Pacira Pharmaceuticals, San Diego, CA) was approved
for local surgical site injection for postoperative pain after haemorrhoidectomy and
bunionectomy by the US FDA in 2011 (Yeung et al. 2018). Each liposomal bupivacaine
particle (DepoFoam®, Pacira Pharmaceuticals, Parsippany, NJ) is composed of a honey-
comb-like structure of internal aqueous chambers containing encapsulated bupivacaine
(Mazloomdoost et al. 2017). A single dose (266 mg) of encapsulated bupivacaine amide-
based local anesthetic is injected directly into the surgical site. A slow-release mecha-
nism involving reorganization of the barrier lipid membranes is sustained for up to 92 h
with concomitant pain control for up to 72 h, as compared to 7-12 h with standard
bupivacaine. Studies show bupivacaine decreased pain compared to placebo, the use of
opioids and the hospital costs (Yeung et al. 2018; Mazloomdoost et al. 2017; Sabesan
et al. 2017; Declaire et al. 2017; Smith et al. 2017; Mcgraw-tatum et al. 2017; Abildgaard
et al. 2017; Alijanipour et al. 2016; Davidovitch et al. 2017). Although the liposomal bupi-
vacaine is not a nanoparticle (3—30 um mean diameter), it is mentioned here because it
is one of the most recent liposomal formulations approved. Characteristics and efficacy
of the last 13 clinical studies with liposomal bupivacaine (LB) for pain management are
summarized in Table 3. In 2017, Rice et al. (2017) published the pharmacokinetic and
safety profiles of LB. When administered in two doses (266 mg each) immediately, 24,
48, 72 h after the first one, the mean maximum concentration (Cmax) of bupivacaine in
plasma was higher than with only one dose, but did not reach the double of the Cmax
from a single dose. The highest Cmax was observed in an individual taking the second
dose 24 h after the first, but was below toxic levels for central nervous system and car-
diac. In general, LB was well tolerated and revealed no clinically relevant unsafety signs
(Rice et al. 2017), provided excellent pain scores, lower opioids consumption, and at a
lower cost (Mazloomdoost et al. 2017; Sabesan et al. 2017; Mcgraw-tatum et al. 2017;
Davidovitch et al. 2017; Johnson et al. 2017; Barron et al. 2016). Thus, liposome formula-
tion of the anesthetic rendered longer therapeutic times with no adverse effects.

Cancer treatment

In this section, the most recent clinical studies using different liposomal drugs for the
treatment of various solid cancers are described. The meaning of the endpoints in the
clinical trials described here go as follows: complete response (CR): disappearance of
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on pain scores and narcotic

consumption
References Years  Surgery n  Efficacy at POD 1
VAS score NRS score POTO (mg)
Yeung et al. (2018) 2018 Robotic sacrocolpopexy with 33 28 - 27.2°
posterior repair
Mazloomdoost et al. 2017 Retropubic sling placement 54 825 2 13.56
(2017)
Davidovitch et al. (2017) 2017 Operative fixation of ankle 37 65 - 34
fracture
Johnson et al. (2017) 2017 Total hip arthroplasty 54 - 35 26.3
McGraw-Tatum et al. 2017 Total hip arthroplasty 40 107.59 - 60.6
(2017)
Sabesan et al. (2017) 2017 Shoulder arthroplasty 34 41° 26 786
Abildgaard et al. (2017) 2017 Shoulder arthroplasty 37 409° - 103.11
Namdari et al. (2017) 2017 Shoulder arthroplasty 78 39° - 144
Amundson et al. 2017) 2017 Total knee arthroplasty 52 - 3.7 45
DeClaire et al. 2017) 2017 Total knee arthroplasty 47 444° - 97.7
Smith et al. (2017) 2017 Total knee arthroplasty 104 40° - 109
Alijanipour et al. 2016) 2016 Total knee arthroplasty 59 26 - 7120
Barron et al. (2016) 2016 Laparoscopic hysterectomy 32 - 2.79 360

n number of patients, POD postoperative day, VAS visual analogue scale pain score in POD 3 (0-100 range, 0="no pain”and
100 ="worst pain”), NRS numerical rating scale pain score in POD 3 (0-10 range, 0 ="no pain”and 10 ="worst pain”), POTO
postoperative total opiates consumption

2 Median consumption of opiates for POD 1-3

b AtPOD 2

¢ Average on POD 0 through 3

94 Obtained by integrating serial pain assessments over the entire time interval
€ AtPOD 1

all clinical evidences of disease or all target lesions; partial response (PR), at least 30%
reduction in size of the target lesions; stable disease (SD), a 30% reduction or less than
25% increase in the size of all detectable disease; objective response rate (ORR) refers to
the percentage of patients with partial or complete response to therapy (tumor reduc-
tion); “effects” refers to those effects that are attributable directly to the drug and not the
natural history of the disease; progression-free survival (PFS) means the time between
treatment assignments and disease progression or death, not affected by crossover or
subsequent therapies and generally based on objective and quantitative assessment;
events-free survival (EFS): time from treatment assignments to disease progression,
death, or discontinuation of treatment for any reason (e.g., toxicity, patient preference,
or initiation of a new treatment without documented progression); overall survival (OS):
time from treatment assignments to patient death, irrespective of cause. Patients who
are alive or missed to follow-up at the cut-off date are excluded (Fiteni et al. 2014; Vil-
laruz and Socinski 2013; Roever 2016). Table 4 describes the phases of a clinical trial.

Doxorubicin and daunorubicin

Doxil® is the first drug delivery system based on PEGylated liposome technology. It con-
sists of encapsulated doxorubicin hydrochloride, an anticancer drug of the anthracycline
family that induces caspase-dependent apoptosis in cancer cells through oxidative DNA
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Table 4 Description of clinical trial phases

Phase No. of patients® Duration?® Description?

I <25 Several months Safety and dosage

Il 25-100 Several months to 2 years Efficacy and side effects
Il At least several hundred 1-4 years Efficacy and monitoring

of adverse reactions
Y Several thousand >4 years Safety and efficacy

@ According to FDA (2018)

b According to American Cancer Society (2018)

damage by blocking topoisomerase Ila, an enzyme needed by cancer cells to divide and
grow (Table 5). This enzyme also generates free radicals (reactive oxygen species) that
can lead to lipid peroxidation and membrane impairment (Yingchoncharoen et al. 2016;
Medina-Alarcén et al. 2017; Bozzuto and Molinari 2015; Lombardo et al. 2016). The
composition of different liposomal doxorubicin formulations (Doxil, LipoDox, Myocet,
Thermodox, and Caelix), as well as their therapeutic indications and other relevant char-
acteristics are presented in Table 2. Characteristics and efficacy of the reviewed studies
with liposomal doxorubicin therapy are presented in Table 6. The major toxicities are
presented in Table 7.

The major drawback of non-liposomal or conventional anthracyclines, such as doxo-
rubicin and daunorubicin, is their related cardiotoxicity (Kaspers et al. 2013; Thorn et al.
2011).Thisis because cardiac muscle is enriched with mitochondria, which contains
a high level of anionic diphosphatidylglycerol (cardiolipin) that interacts strongly with
positively charged doxorubicin, and can lead to lipid peroxidation within cardiac tissue
(Yingchoncharoen et al. 2016; Chang and Yeh 2012). Therefore, encapsulated doxoru-
bicin in liposomes (PLD) was developed to overcome the challenges associated with the
use of free doxorubicin (Miller et al. 2016; Chang et al. 2018; Coltelli et al. 2017; Rocca
et al. 2017; Zhao et al. 2017; Luminari et al. 2017; Fridrik et al. 2016). In addition, PLD
showed a reduced cardiac toxicity compared to non-liposomal doxorubicin. Few cardiac
events were found in most of the clinical trials described in Table 5 (Coltelli et al. 2017;
Rocca et al. 2017; Luminari et al. 2017; Fridrik et al. 2016; Tampaki et al. 2018).

As previously described, PEGylation may extend the blood circulation time of
liposomes and improve accumulation in tumor tissues, hence reducing related adverse
effects (e.g., cardiotoxicity). However, PLD causes specific side effects, such as hand—
foot syndrome (HFS), hypersensitivity reaction, stomatitis and mucositis (Bozzuto and
Molinari 2015; Chang and Yeh 2012; Zhao et al. 2017; Casadei et al. 2018; Jung et al.
2017; Bun et al. 2018). PLDs are small enough to pass through the vasculature in both
tumor and healthy organs, including the skin (Bun et al. 2018). Thus, PLDs are secreted
in sweat after intravenous infusion. This causes an oxidant/antioxidant imbalance in
the skin, since doxorubicin and the Cu(II) ions that are abundant in skin tissue gener-
ate reactive oxygen species, leading to HFS lesions (Jung et al. 2017; Bun et al. 2018).
As Table 7 shows, only>3rd grade stomatitis/mucositis and HFS appeared in the PLD
studies, but not in the three studies that used Myocet®, a non-PEGylated version of
liposomal doxorubicin formulation (NPLD). In addition, Volgger et al. in 2015 reported
no>3rd grade stomatitis/mucositis, HFS, or cardiac toxicity in a phase II trial (n=239)
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Table 5 Efficacy of recent clinical trials with liposomal doxorubicin in mono
and combination therapy

References Years Phase Disease LF n Dose by cycle Efficacy

ORR m-PFS
(%) (months)

Banerjeeetal. 2018 I ROC PLD 48 40 mg/m? IV Q4w 15 3.1
(2018)
Leeetal 2017 I ROC PLD 40 50 mg/m? 5 5
(2017)
Monk et al. 2017 1l ROC PLD 149 40 mg/m? 215 52
(2017)
Marth et al. 2017 Il ROC PLD 109 50 mg/m2 Q4w 21 7.2
(2017)
Lindemann 2017 ROC PLD 86 40 mg/m? 169 127
etal. (2017)
Herzogetal. 2016 |l ROC PLD 15 50 mg/m? IV Q4w - -
(2016)
Leeetal 2017 1l ROC PLD + carboplatin 12 50 mg/m? 45 AUC 333 13
(2017)
Sehoulietal. 2016 Il ROC PLD + carboplatin 5 30mg/m?+5AUC 751 1N
(2016)
Nagao et al. 2016 | ROC PLD + carbopl- 7 30 mg/m?4-60 mg/ 33 12
(2016) atin + paclitaxel m?+6 AUC
Landrumetal. 2016 | ROC PLD + carboplatin + veli- 10 30mg/m?+5 50 -
(2016) parib AUC+50 mg
Kim et al. 2016 | ROC PLD + carboplatin + far- 15 30 mg/m’+5-6 732 104°
(2015) letuzumab AUC+ 2.5 mg/kg
Runnebaum 2018 I ROC PLD + trabectedin 77 30mg/m?+1.1mg/m? 31 6.3
etal. (2018) vV Q3w
Monk et al. 2017 I ROC PLD + motolimod 148 40 mg/m?4-30mg/m?> 209 48
(2017)
Marth et al. 2017 Il ROC PLD + trebananib 114 50 mg/m? 46 76
(2017) Q4W+ 15 mg/kg
Q1w
Shoji et al. 2017 1l ROC PLD +irinotecan 31 30mg/m? 323 2
(2017)
Thakeretal. 2017 | ROC PLD+ GEN 7 50 mg/m?+436 mg/m* 29 47
(2017)
Herzog et al. 2016 I ROC PLD + vintafolide 22 50 mg/m? IV -
(2016) Q4W+7.5mg IV
Q2w
Jehnetal. 2016 I MBC Caelix® 25 25 mg/m’ 45 175°
(2016)
Harbecketal. 2016 Il MBC PLD 105 150 mg/m? 6°
(2016)
Chang et al. 2018 I MBC PLD+CPM 21 30 mg/m? 21 6.4
(2018) Q4-6W +60 mg/m?
PO daily
Tampakietal. 2018 I BC PLD + CPM + bevaci- 62 30mg/m’*+600mg/ 952 -
(2018) zumab + paclitaxel m’+8mg/

kg + 120 mg/m?
Q2w
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Table 5 (continued)

References Years Phase Disease LF n Dose by cycle Efficacy
ORR  m-PFS
(%) (months)
Basho et al. 2016 | TNBC PLD + bevaci- 24 30 mg/m’+15mg/ 21 4
(2016) zumab + temsirolimus kg Q3W+25 mg
QIW IV
PLD + bevaci- 9 30mg/m’+15mg/
zumab + everolimus kg Q3W IV+7.5mg
PO daily
Roccaetal. 2017 | BC PLD + lapatinib 9 30mg/m? 1 5.75%
(2017) Q3W+ 1500 mg/day
on days 1-21
Coltellietal. 2017 Il BC Myocet®+CPM 47 60 mg/m’+600mg/ - -
(2017)° -+ paclitaxel m? IV Q3W +80 mg/
m? QIW
Orlowskietal. 2016 I RMM PLD -+ bortezomib 324 30mg/m*+13mg/m* - 33.0°
(2016)
Cohen et al. 2018 I MM PLD + pomalido- 16 5mg/m?+40 mg 31 5
(2018) mide 4+ dexametha- IV days 1,4, 8 and
sone 1144 mg/day for
21 days, 28-day cycle
Becker et al. 2016 I MM PLD +borte- 20 30 mg/m? IV 90 -
(2016) zomib +CPM + Q4W+ 1.6 mg/
dexamethasone m? 4300 mg/
m? 440 mq three
times by cycle
Voorhees etal. 2017 | RMM PLD+ bortezomib+vori- 32 30 mg/szr 1.3 mg/ 65 139
(2017) nostat m?+ escalating dose
of vorinostat
Casadeietal. 2018 | MHL PLD 9 60mgIvVQ3wW 50 -
(2018)
Luminarietal. 2017 I DLBCL Myocet® +CPM 4+ vin- 49 50 mg/m?+750 mg/ 72 17
(2017) cristine 4 pred- m?and 1.4 mg/m?
nisone + rituximab day 14100 mg days
1-54375 mg/m?
day 3 of each cycle
Fridrik et al. 2016 I DLBCL Myocet® + CPM +vin- 40 50mg/m?4750mg/ 975 -
(2016) cristine 4 predniso- m’+ 1.4 mg/

lone + rituximab

m?+40 mg/m?/day
for 5 days+375 mg
VQw3

LF liposomal formulation, ORR objective response rate, m-PFS median progression-free survival, CPM cyclophosphamide,
PLD PEGylated liposomaldoxorubicin,GEN an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer; Q4W, Q3W,
Q2W, Q1W, every 4, 3, 2 and 1 weeks, respectively, AUC areas under curve, ROC recurrent ovarian cancer, MBC metastatic
breast cancer, BC breast cancer, TNBC triple-negative breast cancer, RMM relapse or refractory multiple myeloma, MM
multiple myeloma, MHL multirelapsed Hodgkin's lymphoma, DLBCL diffuse large B-cell lymphoma

2 TTP, time to progression [the event of interest is only disease progression, while patients who die of other causes are not
included (Fiteni et al. 2014)]

® Median radiologic PFS

¢ Median overall survival. The median follow-up for survival was 103 months (8.6 years)

with NPLD conducted by AGO (Volgger et al. 2015). Also, Baselga et al. reported that
9% of NPLD-treated patients showed >3 grade stomatitis and a higher heart safety in
a phase III clinical trial (#=179) than with doxorubicin (Pharmachemie B.V.) (Baselga
et al. 2014). Nevertheless, NPLD exhibits a short half-life compared to PLD, leading to
use higher NPLD doses than PLD (50-70 mg/m? Q3W, Table 6) (Zhao et al. 2017).
Other liposomal formulations with doxorubicin designed to be more tolerable

and more effective than free doxorubicin have been developed, such as MM-302 and
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ThermoDox®. The MM-302 formulation is a HER2-targeted antibody-liposomal dox-
orubicin conjugate that specifically targets HER2 overexpressing cells, increasing the
delivery of doxorubicin to tumor cells and limiting exposure to healthy cells, such as car-
diomyocytes. Lipid compositions are shown in Table 2. In 2016, Miller et al. (2016) used
the MM-302 formulation plus trastuzumab (30 mg/m? + 14 mg/kg IV Q3 W, respectively)
in a phase II trial in patients with HER2-positive locally advanced/metastatic breast can-
cer. ThermoDox® is a specially formulated and long-circulating lyso-thermosensitive
liposomal doxorubicin that has been used clinically combined with radiofrequency abla-
tion (RFA) to remove the core of the tumor. In a phase I trial, (Oxford.) Lyon et al. (2017)
explored the safety and feasibility of using an extracorporeal ultrasound-guided focus
ultrasound (FU), a non-invasive clinical treatment modality, to induce highly localized
hyperthermia in liver tumors in order to trigger the release of doxorubicin and enhance
the delivery of systemically circulating ThermoDox® (50 mg/m?). No results have been
reported in the study.

DaunoXome® was the first liposomal daunorubicin formulation developed by NeX-
star Pharmaceuticals in 1996 for the management of HIV-associated Kaposi’s sarcoma
(Table 2). Because of their small size (45—-80 nm), the reticulo-endothelial system (RES)
uptake of DaunoXome is diminished, leading to extensive drug circulation. DaunoX-
ome has a half-life of between 4 and 5.6 h, longer than that of free daunorubicin~0.77 h
(Bulbake et al. 2017). Moreover, as described previously, liposomally entrapped anthra-
cyclines cause less cardiotoxicity than conventional anthracyclines, such as doxorubicin
and daunorubicin (Kaspers et al. 2013; Thorn et al. 2011). CPX-351 is also a liposomal
daunorubicin formulation encapsulating cytarabine at a 5:1 molar ratio within 100-nm-
diameter liposomes, which was found to be maximally synergistic and minimally
antagonistic. Each unit of CPX-351 is composed of 0.1 mg of cytarabine and 0.44 mg
of daunorubicin. It also increases the plasma’s half-life and leads to drug accumulation
within the bone marrow (Gergis et al. 2013; Cortes et al. 2015; Lancet et al. 2014).

In a PubMed search covering 2013—2018, only six clinical studies using liposomal dau-
norubicin were found. The studies’ characteristics and toxicity indexes are, respectively,
shown in Tables 7 and 8. The study by Creutzig et al. (2013), using liposomal daunoru-
bicin, achieved the larger percentage of patients with a complete response (89%), fol-
lowed by the study of Gergis et al. (2013), which uses CPX-351 (72.2%) (Cortes et al.
2015), which uses CPX-351 (72.2%) (Gergis et al. 2013). The two studies showed low tox-
icity levels, as same as the study by Kaspers et al. (2013), as shown in Table 9. However,
thanks to a phase III study that demonstrated better overall survival rate (Kraft et al.
2014), FDA recently approved the liposomal combination of daunorubicin and cytara-
bine, CPX-351 (Vyxeos' ), for the treatment of acute myeloid leukemia (AML), as shown
in Table 8. In general, liposomal daunorubicin proved to be effective with a low cardiac
toxicity profile in an increased anthracycline dose in older patients, children, and ado-
lescents (Gergis et al. 2013; Lancet et al. 2014; Kaspers et al. 2013; Creutzig et al. 2013).

Irinotecan

Irinotecan, also known as CPT-11, is a water-soluble semi-synthetic analogue of the
natural alkaloid camptothecin. It prevents DNA from unwinding and replicating by
inhibition of topoisomerase-I. It is used as antineoplastic agent to treat various types
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of cancers, diarrhea, and myelosuppression. Onivyde® (nal-IRI) is a nanoliposomal
hydrochloride irinotecan formulation approved by the FDA in the US and the Euro-
pean Medicines Agency for the treatment of metastatic pancreatic adenocarcinoma
(mPAC) in combination with 5-FU/LV, a fluoropyrimidine-based agent, in patients pre-
viously treated with gemcitabine-based therapy (Pelzer et al. 2017; Clarke et al. 2017;
Wang-gillam et al. 2016; Chiang et al. 2016). In 2017, Clarke et al. (2017) published a
phase I trial of nal-IRI in patients with recurrent high-grade glioma to assess the safety
and pharmacokinetics (PKs) of nal-IRI and to determine the maximum tolerated dose
(MTD). Patients homozygous WT for UGT1AL1 (a genotype reported as toxicity predic-
tor when heterozygous) were initially dosed at 120 mg/m?* IV Q3W and with 60 mg/m?
dose increments, while heterozygous (WT/*28 UGT1A1) patients were started at 60 mg/
m? with dose increments of 30 mg/m? In the WT cohort (1= 16), the MTD was 120 mg/
m? in the HT cohort (n=18), the MTD was 150 mg/m?. Nal-IRI had no unexpected
toxicities. PFS-6 was 2.9%, median PFS was 42 days and median OS was 107 days. The
terminal half-life for nal-IRI did not change with dosage. In 2016, Chiang et al. (2016)
(PharmaEngine, Inc.) published a phase I dose escalation study of nal-IRI in patients
with advanced solid tumors. In this study, the dose-limiting toxicity (DLT), MTD and
PKs were investigated. Three individuals were dosed with 60 mg/m?, six with 80 mg/
m?, five with 100 mg/m?, and two with 120 mg/m? on day 1, followed by 5-FU 2000 mg/
m? and LV 200 mg/m? on days 1 and 8 IV Q3W. Four patients showed DLT: two at the
100 mg/m?* dosage level, and two at the 120 mg/m? The MTD was 80 mg/m? which,
after the study, has been the recommended dosage. The most common observed adverse
effects were nausea (81%), diarrhea (75%), and vomiting (69%). Only four individuals had
stable disease, one showed partial response, and the other, a progressive disease. The
irinotecan liposome injection increased the bioavailability. Maximum plasma concen-
tration decrease and half-life increased. The area under the plasma concentration—time
curve from zero to infinity of SN-38 (the active metabolite of irinotecan) was higher than
irinotecan itself at a similar dosage level. Thus, liposomal dosage form improved phar-
macokinetic parameters of the chemotherapeutic drug, without adding more adverse
effects than the drug itself.

The US FDA approved nal-IRI+5-FU/LV based on results from the NAPOLI-1 clin-
ical trial (Pelzer et al. 2017). This phase III trial of Wang-Gillam et al. (2016) (Merri-
mack Pharmaceuticals) was published in 2016 and demonstrated that the combination
of nal-IRI+5-FU/LV (80 mg/m*+2400 mg/m*+400 mg/m? respectively) improved
median overall survival (6.1 vs. 4.2 months) and median progression-free survival (3.1
vs. 1.5 months) compared with 5-FU/LV therapy alone in metastatic pancreatic cancer
after previous gemcitabine-based therapy. The grade 3 or 4 adverse events that most fre-
quently occurred in the 117 patients assigned nanoliposomal irinotecan plus fluoroura-
cil and folinic acid were neutropenia (27%), diarrhea (13%), vomiting (11%), and fatigue
(14%). It can be concluded that nanoliposomal irinotecan, in combination with 5-FU/
LV, extends survival rates with a manageable safety profile in patients with metastatic
pancreatic ductal adenocarcinoma.
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Paclitaxel and docetaxel

Paclitaxel inhibits tumor endothelial cells growth, through combination with beta micro-
tubules (Qu et al. 2017; Xu et al. 2013; Slingerland et al. 2017). Because of the paclitaxel’s
(PTX) insolubility in water, polyethoxylated castor oil (Cremophor EL) and dehydrated
ethanol in a 1:1 (v/v) ratio are used as formulation vehicles, although it has toxic effects,
such as hypersensitivity reactions, hyperlipidemia and neurotoxicity (Bulbake et al. 2017;
Xu et al. 2013; Slingerland et al. 2017; Ahn et al. 2014; Graziani et al. 2017; Strieth et al.
2013). To avoid these drawbacks, many Cremophor-free liposomal paclitaxel (LPTX)
formulations have been approved by FDA, such as (1) LEP-ETU, a conventional cati-
onic nanosome with a size of about 150 nm (Slingerland et al. 2017); (2) EndoTAG -1, a
cationic liposome formulation of lipid-embedded paclitaxel, which interacts with nega-
tively charged tumor endothelial cells lessening their tumor blood supply (Strieth et al.
2013; Awada et al. 2014; Haas et al. 2012; Ignatiadis et al. 2016); and (3) Lipusu® (Sike
Pharmaceutical Co. Ltd., Nanjing, Jiangsu, P.R. China), a formulation approved in China
prepared by using film dispersion methods followed by a lyophilization technique (Xu
et al. 2013; Slingerland et al. 2017; Ahn et al. 2014; Graziani et al. 2017; Strieth et al.
2013; Awada et al. 2014; Haas et al. 2012; Ignatiadis et al. 2016; Ye et al. 2013). Even
Cremophor-free liposome-like formulations, such as Genexol-PM, a polymeric micelle
formulation of paclitaxel (Samyang Co., Seoul Korea) (Ahn et al. 2014), and PTX-LDE, a
lipid core nanoparticle with encapsulated paclitaxel that binds to low-density lipoprotein
receptors of cancer cells and concentrates in the tumor tissues (Graziani et al. 2017).
Compositions of liposomal and non-liposomal formulations are shown in Table 2.

Table 10 shows the characteristics of the most recent liposomal PTX formulation,
which include clinical trials, liposomal formulation, number of patients, dosage, and
treatment efficacy. In Table 11, a toxicity map is provided. As shown in the non-small-
cell lung carcinoma (NSCLC) treatment, the study of Lu et al. (2015) had the highest
endpoint outputs (ORR 81%, PFS 16.5 months, OS 23.2 months), while the study of
Wang and Zhang (2014) had the lowest (ORR 44%, PFS 6 months). This may be caused
by the addition of gemcitabine. Ahn’s et al. study also combined gemcitabine with pacli-
taxel encapsulated within a non-liposomal formulation (polymeric micelle). The results
were similar to those of Wang et al. (2014) and Hu et al. (2013) used L-PTX plus cis-
platin for the treatment of NSCLC but did not report any results. The study of Lu et al.
was the most effective in the treatment of NSCLC, but it also showed the highest toxicity
levels, as shown in Table 11.

Docetaxel is a semi-synthetic taxane analogue and an antimitotic agent which binds
itself to the beta subunit of tubulin and causes stabilization of tubulinpolymerization.
This stabilization results in a microtubule disrupting and cell cycle arrests at the G,/M
phase, thus inhibiting mitosis. It is poorly soluble in water, and is commonly used in the
treatment of a variety of solid tumors (Mahalingam et al. 2014; Deeken et al. 2013). Due
to its insolubility, the currently marketed docetaxel (Taxotere) is formulated in Tween
80 and ethanol. However, this compound has been implicated in infusion-related tox-
icity, acute hypersensitivity reactions, as well as cumulative fluid retention. To avoid
such undesirable side effects, several Tween 80-free and ethanol delivery systems have
been developed and clinically tested, such as nanosomes, polymeric micelles, protein,
and nanospheres (Deeken et al. 2013; Ahmad et al. 2014). For instance, in the phase I
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Table 11 Characteristics of recent clinical trials with liposomal amphotericin B in mono
or combined therapy

References Years Phase Disease LF n Dose
Cornely et al. (2017) 2017 1l IFD AmBisome® 228  5mg/kg
Romero et al. (2017) 2017 I VL AmBisome® 109 3 mg/kg/day for 7 days
AmBisome®+MA 112 10 mg/kg single
dose 420 mg Sb*>/kg/
day for 10 days
Rahman et al. (2017) 2017 I VL AmBisome® 4 Mil 142 5mg/kg+17.5 mg/kg
AmBisome + Par 159 5mg/kg+ 150 mg/kg
AmBisome® 158 15 mg/kg
Miyao et al. (2016) 2016 I RFN AmBisome® 80 1 mg/kg
Wasunna et al. (2016) 2016 I VL AmBisome® 4 S5G 51 10 mg/kg+ 20 mg/kg/day
AmBisome® 4 Mil 49 10 mg/kg + 2.5 mg/kg/day

IFD invasive fungal diseases, VL visceral leishmaniasis, RFN refractory febrile neutropenia, LF liposomal formulation

clinical trial of Mahalingam et al. (2014) (University of Texas Health Science Center),
15-110 mg/m? of ATI-1123, a liposomal formulation of docetaxel that uses protein-sta-
bilized nanoparticles encapsulating docetaxel in the liposome, was administered Q3W
to 29 adult patients with advanced solid tumors (lung, pancreas, prostate, cervix, and
ovarian). The partial response and stable disease percentages were 3% and 75%, respec-
tively. The grade > 3 toxicities were as follows: 65% neutropenia, 28% anemia, 7% nausea,
7% vomiting, 3% asthenia, 14% fatigue, and 10% febrile neutropenia. Ahmad et al. (2014)
administered 75 mg/m? of a nanosomal docetaxel lipid suspension in 49 patients with
metastatic breast cancer where no >3 grade toxicities were reported. The complete and
partial responses were 4.2% and 31.3%, respectively. Deeken et al. (2013) used a liposo-
mal docetaxel formulation with a mean diameter of 100 nm composed by DOPC, cho-
lesterol, cardiolipin, and alpha-tocopheryl acid succinate to 24 patients (50-132 mg/m?
IV Q3W) with advanced solid tumors. The partial response and stable disease percent-
ages were 8% and 33%, respectively. Only a 38% of>3 grade neutropenia was reported.
In conclusion, liposomal docetaxel shows an acceptable tolerance, improves clinical
efficacy without any premedication and thus, a beneficial treatment for solid tumors
(Mahalingam et al. 2014; Deeken et al. 2013; Ahmad et al. 2014).

Other liposomal formulations for cancer treatment

Mepact® is a liposomal mifamurtide formulation (liposomal muramyl tripeptide phos-
phatidylethanolamine) approved by European Union, Switzerland, and other countries
for the treatment of osteosarcoma (Venkatakrishnan et al. 2013). In the PubMed search
for publications on the subject carried out, no recent results were found. In 2014, Ven-
katakrishnan et al. (2013) published an evaluation of the pharmacokinetics and phar-
macodynamics after a single dose of Mepact® (4 mg IV) in adult subjects with hepatic
impairment in comparison with healthy subjects. In 2009, Chou et al. (2009) (IDM
Pharma) published a phase III trial (n=91) of liposomal mifamurtide addition to
chemotherapy (cis-platin, doxorubicin, methotrexate and ifosfamide) for patients with
osteosarcoma. The 5-year event-free survival rate for patients who received liposomal
mifamurtide (n=46) was 42% vs. the 26% of those who did not (n=45). The 5-year
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overall survival rate for patients who received Mepact compared to those who did not
received Mepact was 53% and 40%, respectively. Moreover, data suggest that liposomal
mifamurtide might provide a benefit when added to chemotherapy for the treatment of
osteosarcoma.

Vincristine sulfate, a semi-synthetic chemotherapeutic agent, has been encapsulated
in sphingomyelin/cholesterol nanoliposomes to overcome the dosing, pharmacokinetic,
and pharmacodynamic limitations of non-liposomal vincristine. This vincristine injection
dosage form (VSLI, Marqibo®) has been approved by FDA, since it has proved to be safe.
It also showed tolerability, enhanced vincristine cell uptake, penetration and concentra-
tion in tissues and organs with fenestrated vasculature or involved in the mononuclear
phagocyte system, including non-Hodgkin lymphomas. It did not show toxic effects, but
high ORR. Thus, it provides encouraging PFS and OS when substituted for standard vin-
cristine in polytherapy (Shah et al. 2016; Kaplan et al. 2014; Hagemeister et al. 2013). In a
phase I study carried out in 2016 with 21 patients suffering of refractory solid tumors or
leukemias, no subjects experienced dose-limiting toxicity (DLT) at the first dosage level
(1.75 mg/m?/dose). Even though, at 2.25 mg/m?, one subject had transient dose-limiting
grade 4 transaminase elevation, no additional DLT was observed when the dose level was
increased. A stable disease was observed in nine patients, although in one subject with
leukemia, a minimal residual disease and a negative complete remission was observed.
Children were able to tolerate adult dosages (2.25 mg/m?/dose of weekly VSLI) with no
evidence of neurotoxicity (Shah et al. 2016). In a phase II study of Marqibo and rituxi-
mab (Therapeutics Inc.), the ORR was 59%: 27% of complete response, and 32% of par-
tial response in 22 patients with relapsed and refractory diffuse large B-cell lymphoma
(DLBCL) or mantle cell lymphoma (MCL). Median response duration was 147 days, TTP
was 121 days, and overall survival was 322 days. Nevertheless, patients reported adverse
effects like Grade 3 peripheral neuropathy, febrile neutropenia, and constipation. Thus,
VSLI+rituximab provokes a durable response in those lymphomas. Adverse effects
were manageable (Kaplan et al. 2014). In a phase II study, 72 patients with untreated
and aggressive non-Hodgkin lymphomas, including 60 with DLBCL, were treated with
Margqibo® plus cyclophosphamide, doxorubicin, and prednisone (2 mg/m?+750 mg/
m?+ 50 mg/m? IV + 100 mg PO Q3W;, respectively), with or without rituximab (375 mg/
m? IV Q3W). Of them, 96% showed complete response and 3% were unconfirmed.
The 5-year and 10-year PFS and OS were 75% and 63%; and 87% and 77%, respectively.
Although exposure was up to 35 mg, this multidrug treatment (Marqibo plus cyclophos-
phamide, doxorubicin, and prednisone = rituximab) was as safe as the same therapy with
non-liposomal vincristine. As for the adverse effects, grade 3 peripheral neuropathy was
reported in 3% of the patients and there was no reported Grade 3/4 constipation. All
this demonstrates that the encapsulation does not alter the safety properties of the drug.
Moreover, Marqibo was well tolerated and showed a higher activity, probably due to the
pharmacokinetic optimization and the enhanced delivery (Hagemeister et al. 2013).

Liposomal cytarabine (Depocyt®) is a slow-release dosage form of cytarabine that
results in cytotoxic cytarabine concentrations in the cerebrospinal fluid for at least
1 week, while non-liposomal cytarabine is maintained for only 24 h (Levinsen et al.
2016; Ferreri et al. 2015; Peyrl et al. 2014). In 2016, Levinsen et al. (2016) published a
phase II trial (n=40) that investigated the efficacy and toxicity of intrathecal liposomal
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cytarabine in comparison with conventional triple (cytarabine, methotrexate, and hydro-
cortisone) intrathecal therapy for the treatment of childhood acute lymphoblastic leuke-
mia. Depocyt® showed acceptable toxicity when administered as first-line therapy with
concomitant use of dexamethasone, which suggests that it could play a future role in
improving outcomes in children with acute lymphoblastic leukemia. Peyrl et al. (2014)
studied the pharmacokinetics and toxicity of intrathecal liposomal cytarabine in sixteen
children and adolescents with malignant brain tumors. In general, liposomal cytarabine
was well tolerated, with relevant but manageable toxicities that showed sufficient drug
exposure for at least 1 week (Peyrl et al. 2014).

Molecular therapy
Patisiran (ONPATTRO®) is a siRNA-delivering liposome developed and marketed by
Alnylam, for the silencing of a specific gene responsible for expression of transthyretin
(TTR), which can cause hereditary transthyretin amyloidosis (Anselmo and Mitragotri
2019). The composition of this liposomal formulation is in Table 2. Actually, ONPAT-
TRO is the newest approved liposomal formulation here described. It is also the first
clinicallyapproved example of an RNAi therapy-delivering nanoparticle administered
intravenously, and it is actually the first therapeutic RNAi approved by the FDA as well,
independent of the nanoparticle delivery vehicle (Anselmo and Mitragotri 2019; Adams
et al. 2018), which was the major milestone in the biotech and nanomedicine industry
(Anselmo and Mitragotri 2019). RNA interference is a cellular process that controls gene
expressions, in which small interfering RNAs (siRNAs) mediate the cleavage of specific
messenger RNAs (mRNAs). Patisiran comprises a TTR mRNA-specific siRNA formu-
lated (Anselmo and Mitragotri 2019; Adams et al. 2018; Suhr et al. 2015). Clinical data
have shown a potent and sustained knockdown of TTR expression and, while there have
been side effects, there has been little evidence of safety concerns about platelets, renal
function or liver enzyme elevations. The results were published in July 2018 (Adams
et al. 2018) and found that the drug reduced TTR production by about 81%. The follow-
ing month, patisiran was approved by both the US Food and Drug Administration and
the European Medicines Agency (EMA). The efficacy was shown in a clinical trial involv-
ing 225 patients, 148 received an patisiran infusion once every 3 weeks for 18 months,
The patients who received the RNA had better outcomes on measures of polyneurop-
athy including muscle strength, sensation (pain, temperature, numbness), reflexes and
autonomic symptoms (blood pressure, heart rate, digestion) compared to those receiv-
ing the placebo infusions (Minamisawa et al. 2019), additional investigation suggests that
patisiran may stop or possibly reverse the progression of hRATTR (Solomon et al. 2019).
MRX34 mimics miR-34a, a miRNA suppressor of more than 30 oncogenes. It is the
first-in-class drug. It is encapsulated in a liposomal nanoparticle with~110 nm diam-
eter. The liposomal component contains amphiphilic lipids, which display a positive
charge under acidic conditions, ensuring the efficient encapsulation of the negatively
charged miR-34a mimic, and a negative charge in vivo at neutral pH to minimize aggre-
gation and electrostatic adherence to the cell membrane of endothelial cells. miR-34a
shows interesting pharmacological properties in mice and non-human primates: it has
a long residence time in blood, inhibits growth of primary tumors, blocks metastasis,
and extends survival (Beg et al. 2016; Li et al. 2013). In a phase I trial with 47 patients
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showing refractory advanced solid tumors, MRX34 dosage (escalating twice-weekly)
showed evidence of antitumor activity. In 2016, a phase I clinical trial of miRNA cancer
therapy was carried out, in these study, 47 patients were treated twice a week with esca-
lating doses of MRX34 IV (BAYER®) (Davidovitch et al. 2017). MRX34 treatment with
dexamethasone premedication was associated with acceptable safety indexes. Remark-
ably, it demonstrated that MRX34 has in vivo antitumor activity even in patients with
refractory advanced solid tumors, including hepatocellular carcinoma (HCC). The MTD
for non-HCC patients was 110 mg/m?2 Two patients experienced DLT of grade 3 hypoxia
and enteritis at 124 mg/m?. A patient with HCC achieved a prolonged confirmed partial
response lasting 48 weeks, and four patients experienced stable disease for more than 4
cycles (Beg et al. 2016; Li et al. 2013).

In 2016, a phase I clinical trial was carried out with 20 patients with multiple scle-
rosis (MS) (Pharmsynthez OJSC). Treatment was performed with myelin basic protein,
the structural component of the myelin membrane. It was coencapsulated in CD206-
targeted small monolamellar mannosylated liposomes prepared from egg phosphati-
dylcholine and monomannosyl dioleoyl glycerol with a-tocopherol and lactose (Xemys;
Pharmsynthez, St. Petersburg, Russia). Patients were dosed weekly with subcutaneous
injections of Xemys at escalating doses of 50, 150, 225, 450 and 900 pg, over 6 weeks
(2.675 mg). Dendritic cells uptake was significantly enhanced by mannosylation of
liposomes. Administration of Xemys was safe and well tolerated in patients with MS.
Mild-to-moderate severe adverse effects were observed mainly after submaximal and
maximal doses. Although no concomitant medication was required, no abnormalities in
blood or other safety problems were observed (Jr et al. 2016).

Other molecular treatments target the normal human p53 gene, which is a well-known
tumor suppressor gene. Over 60% of cancers are related to the loss of p53 suppressor
function. Up to 80% of cancer cases show p53 mutations. Moreover, cells lacking p53
are more resistant to chemotherapy. In contrast, p53 restoration enhances sensitivity
to standard therapies. SGT-53 has been designed as an immunoliposome nanocom-
plex designed for systemic, tumor-targeting delivery. This nanodelivery system targets
transferrin receptor (TFR), a highly expressed receptor on tumor cells, via a single-chain
antibody fragment (termed as TFRscFv). The complex with the receptor is internalized
into the tumor cells via endocytosis. In 2016, a trial with 14 patients with advanced can-
cer was administered with escalating doses of a combination of SGT-53 and docetaxel.
The combination was well tolerated. Three of 12 patients showed partial responses with
tumor reduction of 47%, 51% and 79%, while the others showed stable disease (Pirollo
et al. 2016).

Fungal and bacterial infections

Amphotericin B

Invasive fungal infections (IFI) are considered opportunistic since they occur when
the patient is predisposed to medical treatments (Sdnchez et al. 2016) because of can-
cer, malignant hematological neoplasms (cryptococcosis), bone marrow transplants, or
hematopoietic progenitors, immunosuppressive treatments (fusarosis), prolonged neu-
tropenia, and immunodeficiencies in cells (zygomycosis or mucormycosis), as well as
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hepatic dysfunction (invasive candidiasis), injured mucous membranes (invasive asper-
gillosis), among others (Tacke et al. 2014).

Amphotericin B is used for the treatment of invasive fungal infections (Delattin et al.
2014) and acts by binding itself to sterols in the cell membrane of susceptible fungi, with
a resulting change in membrane permeability. The first liposomal formulations were
presented as AmBisome® from NeXstar Pharmaceuticals, Inc. (now Astellas Pharma,
Inc.); lipid complexes such as Abelcet® from Enzon Pharmaceuticals (now Sigma Tau
Pharmaceuticals, Inc. and Amphotec® from InterMune, Inc. (now Kadmon Pharma-
ceuticals, Inc.) (Table 2). Since the 1970s, more than 353 patents have been registered,
some of which protect the formulation of liposomes under specific characteristics, e.g.,
liposomes and lipid complexes intercalating amphotericin B (Verma et al. 2005).

Table 11 shows the characteristics of recent studies using amphotericin B to treat
fungal infections as described below. In the study of Cornely et al. (2017), the primary
endpoint was the rate of proven/probable IFI: 7.9% to liposomal amphotericin B (AmBi-
some) group, and 11.7 to placebo group, suggesting that AmBisome is not as effective as
prophylaxis against invasive fungal diseases (IFD) in these patients, which is difficult to
explain since AmBisome is effective against IFD. The chosen dose to minimize toxicity
represented a major limitation of the study. However, more patients in the AmBisome
group than in the placebo group had adverse effects (AE). This resulted in the interrup-
tion of treatment with the drug (20.3% versus 7.6%). They also experienced serious AE
considered to be related to the drug. Mortality was very similar in both groups (7.2%
and 6.8%, respectively). The complete remission rate was 72.8%, which was lower than
expected. The low efficacy of AmBisome was attributed to the patients’ baseline char-
acteristics and the diagnostic strategy of IFI. Romero et al. (2017) evaluated the efficacy
and safety of AmBisome and the combination of AmBisome + meglumine antimoniate
(MA). The final analyses showed a CR at 6 months of 87.2% for AmBisome, 83.9% for
AmBisome+ MA, and 77.5% for MA alone. AmBisome monotherapy was safer than
MA, as measured by the frequency of treatment-related adverse events, proportion of
patients presenting at least one severe AE, and the proportion of AE resulting in defini-
tive treatment discontinuation. In the study of Rahman et al. (2017), a 35-year-old female
patient presented high-grade fever, rash, and swelling of arms and legs in the AmBi-
some + miltefosine (Milt) group. Treatment wasinterrupted and she was later diagnosed
with rickettsial fever with concomitant nutritional edema. Approximately, 34% of AE
were related to the treatment. The proportion of patients that experienced any treat-
ment-related side effects was the highest in the AmBisome + Milt group, and the lowest
in the AmBisome group (Table 12). None of the other non-fatal AE reported were related
to the treatment. No drug-related deaths occurred either in the AmBisome group, or in
the combination groups. In the intention-to-treat (ITT) population, the CR at month 6
was 98.1% for the AmBisome group, 99.4% to AmBisome + paromomycin, and 94.4% to
AmBisome + Milt. Although not statistically significant, AmBisome + paromomycin was
the most effective treatment. In the low-dosage study of Miyao et al. (2016), the most
frequent events were electrolyte abnormalities, most of which involved hypokalemia
(7.5% of grade 3 and 3.75% grade 4 cases). AE related with AmBisome that necessitated
protocol discontinuation occurred in only one case that involved grade 4 glutamate
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Table 12 Toxicity of the clinical trials to amphotericin B

References Disease LF Toxicity
Grade 3-5 (%)

Hk ld C Na D AP V P H

Cornely et al. (2017) IFD AmBisome® 28 8

Rahman et al. (2017) VL AmBisome® + Mil 2 3 2 2 18 18
AmBisome® 4 Par 0o 0 0 1 1 22
AmBisome® 23

Miyao et al. (2016) RFN AmBisome® 1125 25

Wasunna et al. (2016)2 VL AmBisome® +SSG 4b 2
AmBisome® 4 Mil 6° 12

In the blanks, this type of toxicity is not reported

IFD invasive fungal diseases, VL visceral leishmaniasis, RFN refractory febrile neutropenia, Ld liver dysfunction, Hk
hypokalemia, C cardiotoxicity, Na nauseas, D diarrhea, AP abdominal pain, V vomiting, P pneumonia, H hypotension, Mil,
miltefosine, Par paromycin, SSG sodium stibogluconate, LF liposomal formulation

2 No grade > 3 toxicity was reported

b Sinus arrhythmia

pyruvate transaminase elevation. No patient deaths related to the treatment occurred
during the study.

In a more recent study by Wasunna et al. (2016), the authors reported the percentage
of patients cured in day 210 of the treatment as follows: 87% to the AmBisome + sodium
stibogluconate (SSG) group, and 77% to the AmBisome + Milt group. There were two
AE related to the studied drug. In the AmBisome + SSG group, severe anemia resulted
in death at day 20 (the only death considered drug related), and in the AmBisome + Milt
group, renal failure at day 3 was resolved. 73% and 78% of patients in the AmBi-
some + SSG and AmBisome + Milt had at least one adverse drug reaction. In the AmBi-
some+ SSG and in the AmBisome + Milt groups, all non-serious drug-related events
were categorized as mild to moderate. The only group that contained SSG (combined
with AmBisome) showed low levels of cardiac disorders (<5%), which were similar to
those of the AmBisome + MF group. The authors concluded that a multiple daily dose
of 3 mg/kg AmBisome may be more beneficial to eliminate fungi than a single 10 mg/
kg dose at day 1, suggesting that a more frequent administration could result in a higher
efficacy of AmBisome.

Amikacin

Pulmonary nontuberculous mycobacterial disease is a chronic infection with necrotiz-
inginflammation, bronchiectasis, and cavitation with irreversible lung damage and
increased mortality. To improve efficacy and reduce toxicity, a liposomal amikacin for
inhalation (LAI) (Arikace®,~300 nm), composed of DPPC and cholesterol, has been
developed. The liposomes are taken up by lung macrophages, allowing for intracellular
delivery of high levels of amikacin into nontuberculous mycobacterial cells (Rose et al.
2014; Olivier et al. 2017). In 2018, Caimmi et al. (2018) reported the effect of LAI (590 mg
daily) on five patients with Mycobacterium abscessus in cystic fibrosis. None of the five
patients showed any side effects related to the treatment, while three patients showed
improvement of their pulmonary function test values and their clinical symptoms.
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Moreover, LAI showed to be active against both P. aeruginosa and M. abscessus. In 2017,
Olivier et al. (2017) (LAI NTM Study Group) reported the efficacy and safety of LAI
(590 mg daily) in 44 patients (phase II study) with refractory pulmonary mycobacte-
rial nontuberculous (Mycobacterium avium complex or Mycobacterium abscessus). A
greater proportion of the LAI group demonstrated at least one negative sputum culture
(32% vs. 9%), and improvement in a 6-min-walk test (+ 20.6 m vs. — 25.0 m) with lim-
ited systemic toxicity. In 2013, Clancy et al. (2013) published a phase II study of LAI (70,
140, 280, and 560 mg; n=7, 5, 21, and 36) in cystic fibrosis patients chronically infected
with P aeruginosa. The adverse event profile was similar among Arikace and placebo
subjects, but the lung function was higher in the 560 mg dose group. Also, the sputum P
aeruginosa density decreased in the 560 mg group against placebo.

Conclusions

Traditional pharmacological agents have to cross many barriers and hostile environ-
ments in the body that degrade them in the way, such as acidic stomach, intestinal
wall barrier, liver, proteins, and enzymes in the bloodstream and the blood brain bar-
rier to be able to reach the site where they are needed. Thus, they have to be ingested
over and over again to be effective in the body. However, if ingestion exceeds certain
doses, the therapeutic agent may become toxic and severely damage one or several
organs in the body. Nanomedicine emerges as a potential solution to these problems,
where liposomes are one of the most effective, healthy, and safe nanoparticle struc-
tures developed thus far. Liposomes can go through the body and function like a vehi-
cle that can reach the specific tissue, organ or receptor of interest. This is achieved
by adding molecules on the liposome surface that function like molecular “keys”. As
described above, the therapeutically benefits of encapsulating anticancer drugs such
as daunorubicin, doxorubicin and cytarabine in liposomes have been demonstrated.
To achieve that, the liposome formulation should be carefully and properly designed.
This may reduce the toxicity while maintaining or improving treatment efficacy. Phys-
icochemical properties and surface composition of liposomes can be easily adjusted
and highly personalized, thus dictating the biological destiny of liposomes for each
individual or disease. Although this is not a simple task, it may represent a turning
point in the application of nano-membrane technology in personalized cancer ther-
apy and other diseases.
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